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CR10

Ku-Band Single-Channel Monopulse Antenna Assembly



ABSTRACT

This report presents the results of a research effort to develop a

Ku-Band single-channel monopulse antenna with significant

improvements in efficiency and bandwidth. A single-aperture,

multi-mode horn, utilized in a near-field Cassegrainian con-

figuration,was the technique selected for achieving the desired

efficiency and bandwidth performance.

In order to provide wide polarization flexibility, a wire-grid,

space-filter polarizer was developed. A solid-state switching

network with appropriate driving electronics provides the receive

channel sum and difference signal interface with an existing

Apollo-type tracking electronics subsystem.

A full-scale breadboa'rd model of the antenna, consisting of a

near-field feed network, circular polarizer, Cassegrainian

reflectors,. and tracking network, was fabricated and tested.

Performance of the model was well within the requirements and

goals of the contract. An overall antenna subsystem efficiency

approaching 70 percent was shown to be achievable over a band-

width of 1. 25 GHz. Included in this report are the analytical

bases of each of the components and of the antenna assembly,

summaries of trades performed to determine optimum alterna-

tives, and the test results obtained with each element and with

the final antenna assembly.
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Section 1

INTRODUCTION

The objective of this contract was to design, fabricate, and test a breadboard

model of a single-channel monopulse feed and reflector assembly for opera-

tion at Ku-band, in support of earth-orbiting spacecraft. The antenna assem-

bly is intended for the purpose of evaluation at NASA-MSC in conjunction with

an Apollo type antenna electronics box and a breadboard Ku-band transceiver.

Single-channel monopulse tracking for communications antennas was success-

fully developed at S-band for the NASA Apollo program. The driving force

which led to the Apollo single-channel tracking development was the weight

and power reduction made possible by the fact that no auxiliary receivers

are required. While weight and power will not be quite as critical for future

programs, they will remain extremely important considerations, and costs

are becoming much more crucial. The elimination of auxiliary receivers

offers substantial cost savings.

The radio frequency (RF) implementation of the tracking techniques developed

for Apollo at S-band cannot be utilized effectively at the higher frequencies.

It was therefore considered judicious to develop a breadboard antenna model

at Ku-band to assess the feasibility of a high-performance, wideband, single-

channel monopulse system.

It has been shown (Reference 1) that to achieve a specified value of antenna

gain, an increase in antenna efficiency of 10 percent provides the perform-

ance equivalent of a reflector diameter change which would result in a

20 percent increase in structural cost. Also, the reproduction cost of a high-

efficiency feed is comparable to that for a low-efficiency configuration, while

the cost of reproduction of a reflector varies with the square or cube of the

diameter. These considerations, when coupled with the obvious spacecraft

penalties of increased weight and packaging problems attendant to increased

antenna size, strongly justify design effort to optimize antenna efficiency.

1



The major requirements imposed on the antenna design included (1) maxim-

ization of antenna efficiency; (2) flexibility to provide any combinations of

left and right circular, or linear, polarization; (3) compatibility with Apollo

antenna tracking electronics; and (4) wideband operation.

The approach taken to meet these requirements was based substantially on

the results of previous MDAC independent research studies aimed at per-

formance optimization of space communication antennas. The antenna con-

figuration selected consists of a multimode feed network with rectangular

aperture horn, which provides the pattern shaping required for aperture

efficiency and the generation of monopulse tracking signals, an external

space filter for generation of circular polarization, and near-field Casse-

grainian reflector. A solid-state switching and phase-shifting network was

developed to modulate the sum pattern with the elevation and azimuth differ-

ence patterns for single-channel operation.

Results achieved with this configuration demonstrate the validity of the

selected design approach. An aperture efficiency of 87 percent was attained

over a bandwidth of 1. 25 GHz, and an overall antenna subsystem efficiency

approaching 70 percent was shown to be achievable for a circularly polarized

monopulse tracking antenna.

A lightweight antenna configuration, utilizing a graphite-epoxy composite

material in a semi-monocoque construction, was designed. This type of

construction offers a substantial weight reduction coupled with excellent

thermal distortion characteristics. Design details of the lightweight antenna

are provided in the report.

This contractual effort was performed for the Telemetry and Communications

System Division of the Manned Spacecraft Center, National Aeronautics and

Space Administration, under contract NAS9-13162. The technical monitor for
the program was Mr. James S. Kelly of the NASA-MSC Electromagnetic

Systems Branch.
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Section 2

ANTENNA DEVELOPMENT

2. 1 CONTRACT TECHNICAL REQUIREMENTS

The following technical requirements and specifications were imposed on the

antenna assembly:

A. Design must be flexible enough to support any combinations of right

and left circular polarization for transmitting and receiving. The

deliverable unit will be assembled so as to transmit left and receive

right. In addition, all of the necessary components will be provided

to allow assembly for any combination of transmit-receive

polarizations.

B. As a design goal, the antenna assembly shall handle 50 watts

(or greater) of transmitter power. Verification by test is not

required.

C. The design shall maximize transmit-receive isolation to the extent

possible; however, special filters are not required solely for the

purpose of isolation.

D. Modulation level of error signal on the receiver channel sum signal

shall be 20 ± 2 percent per degree within the 3-db beamwidth*.

Modulation effects on the transmit channel shall be negligible.

E. Switching voltages to be made available by MSC are +5, -50 volts

at 50 L/0 Hz and 50 L/-9. Hz supplied from an Apollo-type

electronics box.

F. Antenna and lobing system must be compatible with Apollo tracking

electronics.

G. Feed and lobing network are of prime importance. Efficiency of

feed and lobing components shall be maximized.

*The modulation level was changed at NASA-MSC request from 1 to 2 percent
per degree within ±25 percent of the 3-db beamwidth at the outset of the pro-
gram. The current specification was accepted as a design goal.
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H. Pointing accuracy to be within the pattern 1-db beamwidths for both

transmitting and receiving, including effects of tracking errors,

beam misalignments, etc.

I. No requirement is set for delivered system weight; however, the

configuration selected must have potential of lightweight implemen-

tation. The lightweight design data shall be provided.

J. - Transmitter frequency: 14. 550 GHz to 14. 750 GHz

Receiver frequency: 13. 500 GHz to 13. 700 GHz

K. The antenna reflector shall be sized for a beamwidth of 1 to

1. 5 degrees.

L. The delivered model is to be breadboard in nature. Components to

be supplied include antenna reflectors, circularly polarized feed

system, and combining and isolating components needed to provide

sum and error signals and to isolate the transmit channel from the

lobing switches.

2. 2 TECHNICAL APPROACH

2. 2. 1 Subsystem Implementation

The selection of an optimum design approach for a high-efficiency antenna

subsystem involves the consideration of a variety of techniques and

application- imposed constraints. A previous MDAC Independent Research

and Development (IRAD) effort (Reference 2) included a trade study which

determined the near-field multimode feed in a Cassegrainian configuration

to be the most promising candidate for achieving very high efficiency and

wideband performance. A number of other candidates, including multiple-

horn clusters, focal-plane matched feeds, scalar (corrugated) horns,

dielguide, and far- and near-field, conical and rectangular multimode feeds

were investigated in that study. Considering as primary parameters efficiency,

bandwidth, and capability to provide monopulse tracking, the near-field

-The operating frequencies were changed at NASA-MSC request early in the
program. Original frequency specification was 15. 2190 GHz to 15. 2367 GHz
for the transmitter, and 14. 2808 GHz to 14. 3008 GHz for the receiver.
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multimode technique was selected. The rectangular aperture was chosen over

the conical version mainly because of bandwidth characteristics and simplicity

of the feed structure (References 3 and 4).

The near-field multimode feed combines the beam-collimating properties of

near-field feeds with the beam shaping and monopulse capabilities of con-

trolled higher-order mode radiation. The Cassegrainian reflector configura-

tion offers operational convenience (i. e., structural and packaging geometry),

flexibility in feed system design to properly use the near-field characteristics,

and a longer effective focal length to optimize the monopulse tracking (Refer-

ence 5). In addition, Cassegrainian antennas demonstrate (Reference 6)

exceptional cross-polarization characteristics which increase cross-

polarization efficiency as well as easing the achievement of circular polari-

zation over a large bandwidth.

It is obvious from the above that the various elements making up a high-

performance antenna are very interdependent and cannot be considered

independently, particularly the feed network and reflector elements. In the

present design, the polarizer and tracking (single-channel monopulse lobing)

networks are more loosely coupled to other system elements but, as will be

shown in the following discussions, still have considerable impact on the

other elements and the achievable results are degraded if any possible inter-

actions are overlooked.

2. 2. 2 Antenna Efficiency

In this section, the terms relating to each aspect of antenna efficiency are

defined. The ideal gain of a paraboloidal antenna, corresponding to zero

spillover, blockage, losses, etc., and uniform aperture illumination in both

amplitude and phase, is given by

G - (1)
o k2

where A is the physical aperture area. The actual gain for the antenna is

related to the ideal by an efficiency factor 11;

G = qG O  (2)
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In turn, Tr can be expressed as the product of a number of (not necessarily

independent) factors, each corresponding to an effect which reduces on-axis

gain.

71= YiT iq W s ' b T x 'Ir '1h 'a Im 'e (3)

where

T is the primary feed amplitude illumination efficiency

-q is the primary feed phase illumination efficiency

T s is the spillover efficiency

q b is the blockage efficiency

7x is cross-polarization efficiency

)r is the paraboloidal reflector efficiency, including amplitude
and phase due to surface contour and surface reflectivity

?h is the hyperboloidal subreflector efficiency

7a is the efficiency due to alignment error

7m is the feed mismatch or (VSWR) reflected energy efficiency

7e is the feed network efficiency, including ohmic losses and

interactive losses within the feed.

Additionally, a "beamwidth efficiency" term a is defined as the ratio of

measured beamwidth to minimum possible beamwidth. This term is related

to a number of the above efficiency terms; it provides an excellent figure of

merit for antenna performance.

Each of these efficiency terms, their causes and effects as well as a deriva-
tion of their maximum possible values, will be discussed in the section dealing
with the primary influencing factor of that term.

6



2.2. 3 Antenna Geometry

The antenna specification requires a 3-db beamwidth of between 1 and 1. 5

degrees. The beamwidth in a given plane of an antenna is given by

BW - 58.5 degrees (4)
a D

The smallest possible beamwidth of a circular aperture is 58. 5 degrees,

assuming a uniformly illuminated aperture with no phase error or aperture

blockage. At the center frequencies of the transmit (14. 650 GHz) and receive

(13. 600 GHz) bands, a reflector diameter of 48 inches results in minimum

beamwidths of 0. 98 and 1. 06 degrees, respectively. It was desirable for the

purposes of this effort to use the maximum reflector diameter consistent with

the required beamwidth due to the related effects on blockage efficiency and

small (in terms of wavelengths) subreflector diameter'. Naturally, this

results in the highest gain within the beamwidth limitation. The other param-

eter required to dcefine the paraboloid is the focal length, F, or F over D

ratio. To minimize the secondary spillover (Reference 7) past the paraboloid

edges, a deep dish (small F/D) is desirable. The cross-polarized currents

induced on a highly curved reflector leads to selection of a shallow dish

(large F/D). The range of F/D values typically used is between 0. 25 and 0. 4.

A variety of factors, including thermal distortion and packaging (compactness),

are affected by the choice of F/D, but the criterion used for selection was

primarily the effect on efficiency. (As will be shown later, the F/D selected

on the basis of efficiency resulted in an excellent compromise of the other

considerations.)

In order to achieve the increased efficiency benefits available through the use

of the near-field multimode concept, a number of constraints must be imposed

over and above those normally encountered in a typical Cassegrainian antenna

design. These constraints consist primarily of fixed relationships between

horn/subreflector spacing, horn flare angle, subreflector included angle,

*In general, 1 degree is considered to be the maximum beamwidth for which

the use of a Cassegrainian reflector system is justified.
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etc., which must be maintained to achieve the desired illumination and

blocking characteristics. An attempt was made to determine an analytical

expression to optimize these parameters, but the formulation rapidly became

too unwieldly to be of practical use. Therefore, an iterative approach was

adopted, in which a "best estimate" set of parameters was used to develop

an initial design for which illumination and blockage characteristics were

determined. Then deviations from the original parameters, both singly and

in combination, were input in an iterative process to determine the resulting

effects. In this way, visibility was maintained within the process so that the

result of any particular change could be tracked.

After a large number of iterations, a set of parameters and resulting char-

acteristics were obtained which were deemed optimum. These parameters,

if varied in any manner, yielded characteristics less desirable than those

obtained with the optimum set.

The antenna geometry utilized in the design procedure is shown in Figure 1,

and a definition of the terms is given in Table 1.

Table 1

DEFINITION OF CASSEGRAINIAN TERMS

Paraboloid Hyperboloid

D - paraboloid diameter d - hyperboloid diameter

F - paraboloid focal length f - hyperboloid focal length

o - paraboloid half angle p - hyperboloid axial length

K - F/D ratio C - hyperboloid half angle

p - polar coordinate of M - hyperboloid magnification
parabolic surface

e - hyperboloid eccentricity

Feed a - hyperboloid equation constant

h - total feed aperture B - linear blockage ratio

s - feed/subreflector spacing [ - focal ratio

h - horn phase center/
aperture spacing

0 - horn flare angle

8



Reflector

Subreflector

Feed

F S

Fig. 1 Cassegrainian Geometry
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A survey of pertinent published literature indicates the existence of a major

unanswered question pertaining to near-field feeds (References 8 and 9, for

example). The issue involves the nature of the phase characteristics in the

near field of an aperture. It can be shown that, within the approximation of

geometric optics, the near field of an aperture is collimated and planar

(i. e., of uniform phase) over the dimension of the aperture. Indeed, the

collimation properties are the basis of the increased efficiency of near-field

feeds. Such a uniform phase condition would require a parabolic subreflector.

On the other hand, much of the near-field design effort has been based on

considering the phase characteristic to be spherical, as it would be from a

point- source feed. In this instance, a hyperboloidal subreflector would be

required. It is quite possible that these two views are compatible, in that

separate feed horn (and therefore "phase center") locations may exist which

would provide equal performance with either form of subreflector. Some

empirical data obtained tend to indicate such compatibility. A combined

analytical and experimental effort should be performed in order to resolve

this question, but was considered to be beyond the scope of the present con-

tract. In any case, the phase measurements made on the current feed network

design indicated a spherical phase front symmetrical about a unique phase

center (see Section 2. 2. 4. 3), and the design proceeded on that basis and

utilized a hyperboloidal subreflector.

The systematic design process followed to determine the antenna design

follows. The parameter values shown in the calculations are the final values

resulting from the iterative process and used in the hardware design.

D = 48. 00 in. (fixed)

F = 14. 500 in. (limited variable)

K = F/D = 0. 3021

o = 2 tan-1 (D/4F) = 79.22 degrees

d = 6. 30 in. (variable)

B = d/D = 0. 131 The linear blockage ratio is usually chosen for

minimum blockage of the feed and hyperboloid

combination. On the near-field design, this ratio

involves additional considerations. For maximum

10



spillover efficiency, the subreflector diameter

should be as large as permissible, the horn and

subreflector should be of comparable size, and in

order to minimize blockage, the effective blockage

area of feed and subreflector should be equal. d and

h are two of the most important variables in the

iterative process.

h = 3. 577 in. (variable)

Ih = 4. 688 in. (estimated) This value for location of the horn phase

center was based on previous horn measurements.

The phase center was assumed to be 1/5 the dis-

tance from horn throat to apex. Measurements on

the current horn determined the phase center to be

approximately 1/4 the distance from the throat to

the horn aperture, resulting in a value for 1 h of

3. 250 inches which in turn moves the feed away

from the subreflector, since the horn phase center

must be placed at the forward focus of the hyperbolic

subreflector. This feed location proved fortuitous in

that it left room for the polarizer, which had not

been considered in this phase of the design, without

substantially increasing the blockage area.

a = 13. 50 degrees (variable)

0 = a/0. 85 = 15. 88 degrees Optimum near-field subreflector illu-

mination occurs for 0 - a/0. 85, so that the

subreflector included angle is slightly less than

the feed horn flare angle.

1
M = Ctn a/2 = 6. 992

4K

M+ 1
e M- . 334M-1

S= (Cot + Cos a) = 0. 946

f = pF = 13. 720 in.

f
a 5. 143 in.

2e
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b = 2 e-l = 4. 539 in.

p = 22+b 2 -2 = 1.717 in.

s = f- 1 h- p = 7. 315 in. Reference 10 shows that the feed/subreflector

spacing may be as great as d2 /2k without incurring

significant loss. Larger spacings cause the efficiency

to decrease rapidly. Using the lowest frequency of

13. 500 GHz with a wavelength of 0. 875 inch, which

corresponds to the worst case, the maximum allow-

able spacing, Smax, is given by

d2

Smax = = 7.317 in. (5)

An approximation to the resulting aperture blockage is given by

A 1.025 ( ) = 33. 8 in. (6)block s+p

This blockage approximation was used to evaluate the results during the

iterative design process.

Figure 2 shows one aspect of the results obtained during the iterations. The

data are plotted in terms of S/Smax versus Alock with variable parameters

of h, d, and a given in that order. These three parameters, coupled with In
and f (which itself depends on several other variables) were adjusted to find
the combination which provided the minimum A without exceeding Smax.

block
The resulting antenna geometry is shown in Figure 3.

The actual combined blockage of feed and subreflector is given by

Af+ s = 4 ( -SinQ + (h') 2  = 34. 69 in. 2 (7)

where R = d/2, h' is the projected blockage aperture of the feed (as shown in
Figure 3) and 0. is the angle of intersection of the feed and subreflector

blockage, as shown in Figure 4.

12



. o 3.4, 6.3, /.

o 3.4, . , /3..

0 3. 4, e. , 13.5

o 3.4, 6.3, /4

03.4, t.f%, /4
o 3.4, 4.2, 14

o 3.4, 6.Z, 14

o 3.4, .3, 14.f

o. -4,f.z, /4.f

3.S, 6.4, i3. 0

J. , . , s.. o o . , / ,
to 3f7,4.,3 13.- 1

J, f, ~./, /3.F o , , ..3, /,.,,
o 3.3, 6.e, /4

.,.2, /J. yo o. - . ,/4
o J. 4 , G. C, / 4.-

o3.-, 6 .3,/4

,,,1/4Q o o$4g I./, /4.

o 3. -G, .2 /4

o 3.C, 4 , /4.

J.4,4., /4F o0

2f JO 3" 40
BLOCK/A/d AREA , A~ Q. /, .

Z/4. /r'E'ArA/ON, A trS

13



CR10
24

20

REFLECTOR

16

rs= 14.50

z

I-

J 12
-J

d 1/21N.DIASTRUT=ds
3 PLCS

8

4

2.75 3.150
2.75 -

2.852 =h'

HONLO SUBREFLECTOR-

FEEDHORN

0 I 4 8 12 16
0.780 5.468 12.783 14.500

AXIAL LENGTH (IN.)

Figure 3. Antenna Design

14



The blockage created by the subreflector support struts is determined by

calculating the strut projected area multiplied by an approximate factor

which accounts for illumination taper effectivity:

A struts 3 [(r-ro) dl x 0. 67 = 3 [(14. 50-3. 15)0.5 (8)

x 0. 67 = 11.35 in.

The total blockage area is then given by

2
A A + A 46. 04 in.block f+s struts

To determine the effects of blockage, the total blockage area is converted to

an effective blocking diameter, d', which is 7. 66 inches. Then

B - 0. 1595 (9)
eff. D

The blockage gain loss is given by

Gb -20 log (l-2Beff) = 0.454 db (10)

which results in a blockage efficiency of 90 percent.

The final, as-delivered configuration is shown in Figure 5. The major differ-

ence between it and that of Figure 3 is in the location of the feed and inclusion

of the polarizer. Also, the diameter of the subreflector support struts was

increased from 0. 5 to 0. 75 inch. Table 2 provides a summary of the blockage

characteristics for both linear and circular configurations. It can be seen that

inclusion of the circular polarizer substantially increases the blockage area

and reduces the blocking efficiency by approximately 5 percent. Any sub-

sequent iteration of this design would account for the polarizer from the

outset, and the blocking efficiency of the circular polarized configuration

would be substantially improved.
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FIGURE 4 BLOCKAGE GEOMETRY
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Table 2

BLOCKAGE SUMMARY

Design Final

Linear Linear Circular

Af+s: Horn and Subreflector (in. ) 34. 69 32. 23 57. 09

A : Struts (in. ) 11.35 17. 49 15. 81strut

ABlock: Total Area (in. 2) 46. 04 49. 72 72. 90

d': Effective Blocking Diameter (in.) 7. 66 7. 96 9. 63

Beff: Blockage Ratio 0. 160 0. 166 0. 201

Gb: Gain Loss (db) 0.454 0. 491 0. 730

Ob: Blockage Efficiency (%) 90. 0 89. 3 84. 5

Parameters of the final antenna assembly are given in Table 3. It should be

noted that the only parameter concerning the feed horn so far determined is

the horn aperture, h. The remaining feed parameters will be developed in

the following section. The parabolic equation defining the reflector surface

is given by

2
y = 4Fx (11)

while the hyperbolic equation for the subreflector is given by

x = a [ 1/2 -1 (12)

A number of factors affecting the analysis and achievable characteristics of
the near-field Cassegrainian configuration are dependent upon the size of

reflector surfaces in terms of operating wavelengths. Much of the analysis

used in the design process is based upon minimum values of 12k for the sub-
reflector and 100X for the reflector. Using diameters less than the minimum

18



Table 3

ANTENNA PARAMETERS

Reflector Diameter 48. 00 in.

Reflector Focal Length 14. 50 in.

F/D 0. 302

2
Parabolic Equation y = 58x

Feedhorn Aperture 3. 577 in.

Feedhorn/Subreflector Spacing 7. 32 in.

Hyperboloid Diameter 6. 30 in.

Hyperboloid Focal Length 13. 72 in.

Hyperboloid Equation x = 5. 1431 + l) -1
4. 5393

diameters results in a lessening of achievable efficiency. Both the subreflec-

tor and reflector diameters of 7. 2\ and 55k are substantially less than the

minimum values. Effects of smaller diameters result primarily in greater

spillover and edge diffraction, smaller allowable horn/subreflector spacing,

Smax, and greater blockage ratio. An increase of reflector diameter, there-

fore, would increase several of the efficiency factors. As will be seen in the

results achieved, performance degradation due to this cause appears to be

slight, except for the effective blockage ratio.

2. 2. 4 Feed Network

The advantages to be derived from the use of a near-field multimode feed are

threefold:

A. Beam-collimating properties of the near field, which results in

reduced spillover and, hence, higher efficiency.

B. Beam-shaping properties provided by use of higher-order wave-

guide modes in addition to the basic lowest order mode. Utilization

of these modes allows tapering of the normal TE 1 ,0 mode E-plane

aperture distribution to increase illumination efficiency, as well as

providing odd-order modes for development of monopulse tracking

signals.

19



C. Simplicity and compactness of the single-aperture feed which

decreases aperture blocking, and lack of much of the usual sum

and difference monopulse circuitry and its associated losses and

bandwidth limitations.

The first two of these advantages are shown graphically in Figure 6, which

depicts the typical efficiency improvement available through the use of this

type of feed (Reference 8).

In this section, the analysis and development of the near-field multimode

feed are described.

2. 2.4. 1 Near-Field Characteristics

It has been shown (Reference 11) that the energy radiated from an aperture

of diameter D is constrained within an imaginary "tube" of the same diameter

as the transmitting aperture out to a distance of approximately D 2 /2k. In this

radiating near field, which extends from several aperture diameters to some-

what less than 2 D 2 /k, the radiated energy is collimated; i.e., it does not

exhibit the typical 1/R 2 spatial dispersion encountered in the far field. The

radiation pattern is essentially a reproduction of the electric field distribu-

tion within the aperture, and the intensity is cyclically variable with axial

distance. By placing the feed horn with respect to the subreflector such that

the subreflector fills the collimated beam, spillover efficiency can be signif-

icantly increased over that obtainable with more conventional feeding methods,
and by tailoring the distribution in the aperture, optimum illumination of the

subreflector can be achieved for high illumination efficiency. The inclusion

of capability of propagation and coupling of odd-order modes also provides

the difference patterns for monopulse tracking. These functions are all per-

formed in a single-aperture feed which is inherently broadband and relatively

small for reduced aperture blocking.

The aperture efficiency which can be achieved with near-field feeds has been

determined by Fresnel field analysis (Reference 10). The portion of interest

of the curves of efficiency degradation, a, versus horn/subreflector spacing
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as determined in that analysis are given in Figure 7. The spacing is given in

terms of Raleigh distance, or fraction of 2 D 2 /k, and curves are presented

for several aperture distributions.

Aperture distributions used in the Fresnel analysis are of the form

E = B + (1 - r)k (13)

where r is the normalized aperture radius P/d/2, and B is the illumination

edge-taper, or pedestal height. The curve labeled ]max represents the maxi-

mum efficiency that can be achieved with a given set of parameters as deter-

mined by Kay's (Reference 12) formula for the ratio of maximum power

transmitted through a given area of space to the total power radiated from the

aperture. The curves of Figure 7 have been normalized to max in Figure 8,

which gives the aperture efficiency achievable for the various distributions- .

The general characteristic of these curves outside the region shown is a rapid

asymptotic approach to the well-established far-field values as the spacing is

increased beyond 0. 4. For the two tapered distributions shown, which are

indicative of all reasonable aperture tapers, the efficiency decrease attendant

to spacings greater than 0.2 to 0.25 illustrates one factor leading to the

establishment of an Smax of d2 /2 k . It is interesting to note that uniform illu-

mination (B=K=0) does not provide maximum efficiency in the near field as it

does in the far field.

As will be shown in the following section, the aperture distribution obtained

with the multimode horn has approximately a 10-db edge taper and a pattern
0.75

shape very nearly given by E = 0. 462 + (1 -7 ) , with a spacing equivalent

to 0. 29 in Figure 8. Using a linear extrapolation for the value of K with the

curve given for the 10 db, K = 1 distribution, an illumination efficiency of

92 percent is determined. If the spacing had been d /2k as mandated in the

system design process of the previous section, an illumination efficiency of

approximately 96 percent would have been obtained. This is a fairly drastic

example of the Smax criteria.

*The efficiency term as used here includes only that due to illumination
distribution and spillover at the subreflector.
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2. 2. 4. 2 Multimode Feed Network

The use of the near-field technique for improved feed efficiency requires that

the feed pattern be rotationally symmetric and virtually sidelobe free. These

feed attributes are extremely beneficial in any feed system, but are perhaps

more critical in the near-field arrangement and must be achieved if the

expected efficiency is to be attained. A dominant-mode (single, lowest-order)

feed does not possess these characteristics; beamwidths are considerably

different in the E and H planes, and sidelobes are relatively high, particularly

in the E-plane.

Typical near-field dominant-mode horn patterns are shown in Figure 9, where

the rotational asymmetry and E-plane pattern distortions are quite evident.

The aperture field distribution which gives rise to the radiation patterns are

shown in Figure 10. It can be seen that the H-plane distribution is tapered in

a cosinusoidal fashion, producing the narrow and smooth H-plane pattern,

while the E-plane distribution is uniform, providing the broader, scalloped

pattern with appreciable sidelobes.

The E-plane aperture distribution can be modified by the addition of higher-

order modes to closely approximate the H-plane distribution, resulting in the

desired pattern rotational symmetry and elimination of sidelobes. This can

be accomplished with a variety of mode configurations, constrained only by

the required waveguide cross section for mode propagation and waveguide

lengths for appropriate mode phasing. The simplest mode configuration which

accomplishes the desired effect requires the inclusion of TE ,2 and TM1,2
modes in addition to the TE ,0 mode. As will be seen from the pattern results

achieved, this combination provides adequate pattern-shaping capability, and

inclusion of higher-order modes would only increase feed dimensions and

complexity. The combination of TE, 2 and TM1,2 modes, designated the

LSE1, 2 mode, are shown in Figure 11, as are the results of combining the
LSE1,2 mode with the TEl,0. One characteristic of LSE type modes which

must be considered is that there is an axial component of the field which does

not exist with the more common TE and TM type modes. This will be dis-

cussed in a later section.
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The feed pattern distribution of the combined TEI, O and LSEI, 2 modes is

given by (for 0 - polarization)

[ p w# Tr iX
E (9,4) = Cos + p Cos Cos e

max max max

(14)

where p is the ratio of LSE1, 2 to TEl, O mode amplitudes and X is the phase

difference between the modes at the feed aperture. Calculated E-plane pat-

terns, for several values of P, are shown in Figure 12, along with an H-plane

pattern for comparison. It can be seen that P = 0. 5 results in an almost per-

fect match between E- and H-planes. The patterns of Figure 12 were calcu-

lated on the basis of an optimum phase relationship between the modes.

Figure 13 shows the effects of varying the relative phase, X, on pattern

shape. X is given in terms of length of the waveguide phasing section. Rela-

tively small changes of guide length are seen to produce fairly large altera-

tions of pattern shape. Variations of guide length at a fixed frequency are

analogous to variations of frequency with a fixed length when considering

phasing characteristics, so that the data of Figure 13 are indicative of feed

bandwidth. Converting the phase length variable to frequency results in a

bandwidth expression, as depicted in Figure 14. Naturally, bandwidth of the

feed is limited by the overall length of the feed, and Figure 14 was based on

an estimate of the length required for inclusion of monopulse tracking cou-

plers. A nontracking feed, or one which required less space for tracking

couplers, would exhibit considerably greater bandwidth.

A generalized block diagram of the multimode feed network is shown in

Figure 15. The orthomode transducer is a convenient way of introducing two

orthogonal linearly polarized fields into a single waveguide, while maintain-

ing excellent isolation between the two. All desired polarization within the

feed network is linear, with circular polarizations being developed by a

network external to the feed. For purposes of discussion, the internal fields

of the transmit channel will be considered as horizontally polarized, and the

receive channel as vertical. The output of the transducer is a square guide,

and the square shape is maintained throughout the remainder of the feed so
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that orthogonal linear polarizations are available for polarization flexibility

and transmit-receive isolation. The square dimensions have now been deter-

mined for each end of the feed network; the horn aperture, h, was determined

in the system geometry design, and the network entrance, al, by the aperture

of a commercially available orthomode transducer, which in this case is

0. 562 inch.

Generation of the LSE1, 2 mode is conveniently accomplished with a symmet-

rical step discontinuity in guide size. A Fourier analysis of the fields in the

region of the discontinuity (Reference 13) provides a method of determining

the ratio of the mode amplitudes, the results of which are shown in Figure 16.

Generation of the desired value of P = 0. 5 requires a step discontinuity ratio

a2/a 3 of 0. 78.

Constraints on the implementation of the discontinuity ratio are governed by

the waveguide size required for propagation of desired modes and cutoff of

any higher order undesired modes. The desired modes include the TE 1 ,

TE 1 , 2' and TM1, 2 for the sum patterns and TE2, 0, TE, 1 ,i and TM1, 1 for

the tracking functions. Included in the lowest-order undesired modes, those

whose cutoff wavelength is only slightly greater than the cutoff of desired

modes, are primarily the TE2' TE3, 0 TE 3 and TM1, 3 The cutoff

wavelength Xc for modes m, n in a square waveguide of dimension a is given

by

2
c (15)

m, n 2 2
m + n

2
a

and is shown in Figure 17. The minimum value of a3 is determined by Xc1, 2
at the longest wavelength of interest (0. 875 inch), and is 0. 975 inch. The

maximum size, set by Xc2 , 2 at the shortest wavelength (0. 801 inch), is

1. 132 inches.

*In some applications, the TE 3 0 mode may be beneficial. It may be used to
widen the peak of the H-plane beamwidth appreciably, which results in a
smaller value of k in Equation (13) and somewhat greater possible aperture
efficiency. However, inclusion of this mode increases complexity and
severely limits bandwidth to the extent that its use did not appear appropriate
for this application.
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Several factors affect the selection of guide dimension a 3 within the range

determined above, but in the interest of bandwidth and attenuation the largest

possible value (a3 = 1. 132 inches) was selected. A tapered waveguide section

is then required between the exit aperture of the orthomode transducer

(0. 562 inch) and the horn throat (1. 132 inches). Then a 2 = 0. 78a3 = 0. 884

inch.

The remaining feed network dimension to be determined is the length of the

phasing section required to achieve the proper, in-phase condition of the 1, O0

and 1,2 modes at the horn aperture. Ignoring for the moment any relative

phase shift introduced by the tracking couplers, the relative phase velocity

of the 1, O0 and 1, 2 modes in the square guide and horn sections of the network

must be determined. The phase shift Amn incurred as the mode traversesm, n
the horn is given by the expression

2 2 / 2a 2
Ad Tr/ + n 2 Coto 2h 3-

m, n 2 Cot m2 + n2 j + n

-tan -1 + tan n2 2 (16)
n\ m +n

A values for the 1, 0 and 1, 2 modes, and the relative phase shift between

them, nA1, 0-1, 2 are given in Table 4 for the previously determined network

parameters. At the center frequency, there is a phase difference of 180

degrees, with approximately a ±10 degree variation at the band edges. This

requires a relative phase shift of 90 degrees within the phasing section to

achieve the desired mode phase characteristics, since the two modes origi-

nate in phase quadrature at the step discontinuity, with the higher-order

mode lagging the fundamental mode.

Length of the required phasing section can then be determined from

10-1,2 2wz - = 90z (17)
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Table 4

HORN INSERTION PHASE

Frequency (GHz)

Mode 13. 5 13.7 14.125 14. 55 14. 75

1,0 1726. 30 1753. 1 °  1810. 10 1867.00 1893. 80

1,2 1535. 20 1565. 80 1630. 30 1694.0" 1723. 80

0-1,2 191. 10 187. 30 179. 80 173. 00 170. 00

where z is the length of guide between the step discontinuity and horn. The

two shortest values for z are 0. 575 and 2. 874 inches. These values neglect

any insertion phase characteristics of the tracking mode couplers which must

be located in this region. These effects and the required length adjustments

were determined experimentally. While it is desirable to keep the network as

short as possible for bandwidth consideration, it was doubtful that the shorter

length could physically accommodate the necessary tracking ports or allow

for their insertion phase.

Figure 18 summarizes the analytically derived dimensions for the feed net-

work, which were used for fabrication of a prototype unit. The prototype was

built in modular form, as shown in Figure 19, so that the length of the phasing

section and location of the tracking couplers could be varied in an optimization

process. In the foreground are shown several configurations of tracking cou-

plers which were investigated during this development, and which are

described in Section 2. 2.4. 4.

2. 2. 4. 3 Phase Center Determination

Precise determination of the feed horn phase center is required for proper

location of the horn in the near-field Cassegrainian geometry in order to

achieve maximum efficiency. Substantial difficulty was encountered in obtain-

ing the phase measurements with the desired degree of accuracy, primarily

due to the use of commercial antenna positioners and inclement weather.

Extensive modification and realignment of the positioners satisfactorily over-

came the mechanical problems, and resulted in an estimated phase measure-

ment accuracy of approximately 12 degrees. Measured phase countours
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versus axial displacement with respect to center of rotation is shown in

Figure 20. The near-field measurements were performed by rotating the

feed horn relative to a fixed, open-end waveguide; therefore, a spherical

phase front emanating from a phase center coincident with the center of

rotation produces a measurement of constant phase. The axial location

designated as zero was taken as the phase center of the horn, i. e., the

apparent center of a spherical phase front. This corresponds with a point

3. 250 inches behind the horn aperture. It can be seen that the phase pattern

is quite spherical over a range exceeding the angle, a , required for sub-

reflector illumination, and efficiency degradation due to feed phase error,

T , should be extremely small.

A conflict in interpretation of phase center and phase front characteristics for

near-field feeds was pointed out in Section 2.2.2. Although no attempt was

made to resolve that conflict, examination of the data in Figure 20 leads to

the conclusion that the two views are compatible. Based on past experience

and previous far-field measurements on similar horns, the phase center was

estimated to be between the horn throat and apex, 4. 688 inches behind the

horn aperture. This indicates a difference of 1. 438 inches between the

estimated and measured phase centers. If the phase front is actually planar

in the near field, measurement by the technique utilized would produce

circular phase variation when the phase center is axially displaced the proper

distance from the center of rotation. The extreme curves of Figure 20, -1. 5

and +1. 1 inches, indicate trends toward such circular phase variations. If

such is actually the case, the conflict does not exist and the choice of which
"phase center" to use would be decided by which type of subreflector is

desired, a paraboloid for the planar phase configuration or an hyperboloid

for the spherical phase configuration. As previously stated, the spherical

phase front interpretation was accepted and a hyperbolic subreflector was

used in conjunction with a phase center location 3. 250 inches behind the horn

aperture.

Utilizing the geometry determined in Section 2. 2. 2, in conjunction with the

phase center location described above, near-field patterns of the feed network

were measured. The first set of measurements was made with no tracking

couplers in the network so the data are comparable to values determined by
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Equation (17). Results of these measurements are summarized in Figure 21,

which shows the effects of varying the length of the phasing section on E-plane

patterns of port 1. Assuming that the optimum-mode ratio, P, has been

achieved, proper phasing length provides an E-plane pattern identical to the

H-plane. The data of Figure 21 show the proper length to be between 2. 70

and 2. 85 inches; a linear interpolation of magnitudes at the subreflector edge

indicate an optimum value of 2. 80 inches. Insertion of this value for z in

Equation (17) results in a phase shift of 78. 5 degrees, which is considered

excellent agreement with the analytically derived value. The 11. 5-degree

discrepancy is attributed to tolerances in waveguide dimensions, insertion

phase of the horn, and discontinuities within the waveguide due to the modu-

lar elements utilized.

As discussed earlier, the tracking couplers will introduce phase shifts in the

network which have so far been neglected and which will require adjustment

of length of the phasing section for optimum performance. Therefore, the

configuration of the tracking couplers must be determined before the network

length can be finalized. It will be seen, however, that the relative insertion

phase of the tracking couplers, particularly the LSE1, 1 coupler, is dependent

on axial position of the couplers, while the optimum coupler location is also

dependent upon overall length of the network, requiring extensive iterative

measurements to determine the optimum configuration.

2. 2. 4. 4 Tracking Couplers

Conventional monopulse tracking feeds use a four-horn cluster, or more

complex equivalent, to derive the tracking function. The four horns separate

the received signal into four parts from which two orthogonal angle tracking

signals are developed in microwave summing and subtracting networks. It

has been shown (Reference 14) that, in a suitably sized feed network, the

odd-order (unsymmetrical) field distributions required for angle tracking are

excited in any feed which is illuminated by an off-axis source. The two modes

of interest for tracking are the TEO0,2 and the LSE1, 1 (TEl, 1 + TMI, 1) modes.

Each of these are lower order than the LSE1, 2 modes which the network was

sized to accommodate for pattern shaping reasons, so the tracking modes will

also exist in the network. The field distributions of the two modes are shown
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in Figure 22. A variety of couplers would appear to be suitable for extraction

of each of these modes. Shunt, or axially oriented, slots are the type most

commonly preferred due to their lesser impact on the fields within the network

as compared to series, or transverse, slots. Therefore, all original prototype

designs utilized shunt coupling slots. Several of these coupling sections were

shown in Figure 18. Consideration of the desired modes shown in Figure 22

would indicate minimal difficulty in satisfactorily coupling to those modes, but

inclusion of the sum modes (Figure 10) which exist in both polarizations, and

cross-polarized difference modes which may be excited due to illumination

polarization, polarizer imperfections, or any discontinuity within the feed

network, considerably complicate the issue. Also, it was determined early

in the development process that axial location of the difference mode couplers

was quite critical. This is to be expected, since the step discontinuity appears

as a short circuit to all but dominant-order modes, and the higher modes all

propagate at different velocities within the larger guide section, creating

interference patterns among any of these modes which are coupled.

TEl,1  TM1, LSE 1,1

Elevation Difference

TE0,2

Azimuth Difference

TRACKING MODE FIELD DISTRIBUTIONS

Fig. 22
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The TE 0 , 2 coupler is reasonably straightforward. A dual, shunt-slot on the

waveguide centerline, as shown in Figure 23, was utilized in the IRAD version

of the feed network. This dual-slot configuration, connected through a hybrid

tee, has the advantage of separation of the desired signals from any even-mode

signals present. Even-mode signals are coupled to the unused and terminated

port of the hybrid tee. Excellent azimuth difference plane patterns were

obtained with this configuration; however, use of the dual slots, with the

attendant requirement for the hybrid tee and interconnecting waveguides, con-

siderably ahd unnecessarily increases the mechanical complexity of the

device. Several of the couplers intended for use with the LSE1, 1 modes also

provided satisfactory azimuth difference patterns when rotated 90 degrees from

their normal position but these also required the undesirable combining hard-

ware. The single-slot configuration of Figure 23 provides equally good differ-

ence patterns, as long as the slot is kept reasonably narrow and precisely on

the guide centerline, and eliminates the need for combining hardware. The

resulting difference pattern is shown in Figures 24 and 25. The digital contour

plots, such as Figure 25, are maps of the radiated field over a solid angle,

with field intensity shown in decibels. Taken in half-degree incremental steps

(and occasionally in tenth-degree steps for very fine grain data), they proved

extremely useful during the development effort, particularly for the LSE1, 1
coupler. These fine-grain data readily showed pattern perturbations which

indicated undesirable mode coupling and which might have easily been missed

with only principal plane or more widely spaced analog patterns. An indication

of the axial-spacing dependence is shown in Figure 26. These data, taken

with only the TEO, 2 coupler in the network, show the limits of the values of

on-axis port 1 sum magnitude to port 3 azimuth difference peak ratios. The

scatter of the data points was due to varying overall network length and fre-

quency throughout the receive band. These data clearly show the requirement

for careful location of the difference couplers. No discernible effects of this

difference coupler on sum channel characteristics were found, other than a

minor relative phase shift which requires only a change in length of the

phasing section of the network.

Satisfactory performance of the LSE1,1 coupler was considerably more

difficult to achieve than was the case with the TE0,2 coupler. The difficulties
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encountered were due to the inability to find a coupler which responded only

to the mode desired. The shunt-slot couplers investigated are shown in

Figure 27. These couplers, together with several variations and com-

bining networks, failed to produce the required difference patterns. Inter-

action with other modes and polarizations caused a variety of pattern

characteristics which made the patterns unacceptable. An example of

interaction of the LSE1, 1 and TEO, 2 modes with indications of weak coupling

to 1, 0 and/or 1,2 modes in a single coupler is shown in Figure 28. Four

and even more, lobed patterns were commonly produced by the shunt couplers.

The hesitancy to adopt transverse slot couplers, as Figure 2 7c, for the LSE 1 , 1

mode was due to the fact that such slots couple equally well to the LSE1, 2 mode

utilized in shaping of the sum patterns as they do the desired difference modes.

This results in a strong dependency of both transmit and receive sum patterns

on difference coupler properties.

Elevation-difference patterns obtained with the transverse slot coupler of

Figure 2 7c combined through the H arm of an E-plane folded hybrid tee are

shown in Figures 29 and 30. Effects of axial location of this coupler were

much less than those encountered with the TEO, 2 coupler, as shown in

Figure 31. On the basis of the difference patterns only, this coupler con-

figuration appeared quite satisfactory.

It quickly became evident that port 2 sum pattern characteristics were being

affected quite seriously by this difference coupler, due primarily to undesired

coupling to the LSE1, 2 mode. Such sum pattern dependence multiplied greatly

the number of measurements and considerations required for determination

of the final configuration. An E-plane folded hybrid tee is used to combine

the energy from the two transverse coupling slots and produce the required

difference pattern. This tee has two output ports; one port, the H or side

port, produces the difference of the two incident signals and the other, E or

straight port, produces the sum. The H arm is the port which is used for the

pattern. Measurements made on previous difference coupler configurations
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a b b

Fig. 27 LSE1,1 Difference Couplers

49



09

A
zi

m
u
th

 
A

n
g
le

 
-

D
eg

re
es

p 
H

 
H

H
F

O
 

M
w

 
0 

w
 

M
w

w

Z
 5
3
w
w
q
w
w
 

k
 

u~
o 

o 
a
 

m
 w
 

w
 
%
 

w
 t

o 
to

 3
 

r\
) M

 
Z

 U
i U

; E
i 8

 
L

2 
i 

=
 

2 
w

 c
o 

m
m

 
co

 c
o 

w
 m

 
w

 w
 w

 
w

 w
 w

w
w

-\
n
C

rm
in

 
m

 
n
a
n
 

an
 

n
m

m
y

 N
 

N
a 

a 
-

-
m

 
ar

 aJ
 

a
.1

m
 

Im
m

m
m

m
m

in
Q

.-
m

--
 

-
N

) 
u 

o

o
D

(o
 

e
r
 

o
0
 

a 
w

 
w

 
w

 
w

 
a
 

w
 

w
 

o
 

w
o
 a

 
0
0
 

m
w

 
o
 

e 
m

 
a

U
 W
 

w
 w

o a
 

M
 -4

 N
 

-
,-

4 
4 

4
w

Q
C

o
 

5 
3
 

F
3
i"

 -F

c
o
m

D
.O

e
D

 
m

 
w

eW
 

c
o
t.

O
e
O

 
o-

N
u 

5J
38

 
!M

 
Q

U
 

G
~

 
a 

w
 

m
e
 

om
Z

Z
m

e 
m

e

.a
 l 

o
 

w
 

N
 

4 
-4

 ,
 

-4
 

-
-4

 -
4 

-
-0

4
N

 
-

-
M

 q
 

-
-

a 
E

 
w

4 
m

 
e-

 
e 

-
4
M

 
O

O
M

 
ID

H
 

9m
a 

,l 
~ 

-~
. 

a~
~a

o 
-~

.-
a

--
 

O
m

 
m

uc
l 

~o
o-

o 
ui

r,
- 

=
 

3l
 

i-
 

I 
~ 

u 
I 

I 
I,

 
C

 
ta

0z
 

H
 

m
 

0
-
-
-
-
 

-
-

-
-

-
-

F,
 

-
-,

 
-,

o
s
e

o
o

 
m

 
s 

w
 

O
W

s
D

s
 

O
'5

 
N

U
U

N
~

 ~ 
N

 
JC

zM
 

G
E

 
D

B
 

U
1$

 
~ 

a 
e 

w
 

N
 

N
 

N
 

a 
e

-o
 N

 0
 
0
 

0 
0 

a0
 0

0 
0 

0
 0

M
-N

ao
W

 
q
n

7
3
 

4
h
q
4
--

4
a
 -

4
4
 

-
-4

 
0
 

C
$
M

O
o
~

b
q

 
M

M
0
1
0
 

0
1
 

M
 

-4
 

-4
 

M
k

 
3
 

3
=

 
M

a
 H

&
 
j 

Il
F

. Z
E

D
 

U
 ; 

:6
 M

=
=

 
3
W

W
 

-4
 

4
M

M
M

 
M

 
M

0
 

O
l 

M
 

-4
-l

- 
-4

 
-

0

O
q

 
a
 

4
 
-4

 
4
 

M
 a

 
M

 
M

 
M

 0
 

a 
M

 
(n

 
0
) 

O
 b

 
a
 Q

*
 a

) 
0
1
-4

 
-

W
 

O
o
 

5
 

M
E

 
5
1
 

F
D

 7
D

 6
0
 

M
I.

 
~

,, 
I~

~
0
 

o
l 

0
0
 

l-
 

~- 
~b

0
W

e-
 

-
a 

a 
i 

a 
-U

 
N

 
m

N
- 

-
-

M
 0

u
 

.0
 

0
0
o
 

0
0
0
0
i0

 
0
 

a

o
o
 
-4

 
N

 
-

~ 
m

 
m

 
m

e 
s 

s 
a 

U
2 

5 
5
 

0 
0 

E
 

G
 

r 
M

 
M

0
 

dO
M

N
a 

( 
-

-
W

 
M

M
: 

7 
q

 
o
 

D
 

o
e
w

-4
 
-N

 
-

.
.

.
.

M
. 

.
.

.
.

N
. 

.
.

.
.

W
 '
3
 

W
 

-.
 

-
.

M
 M

- 
0r

 
M

 
n.

. 
.. 

.
.

.

0
o
m

O
~

0
e
 

U
 

eo
am

m
e 

U
 

O
N

4
ra

 
m

 
a 

g
o
- 

N
h
J
a
 

0 
U

m
m

 
a 

a

o 
H

0
 w

 -
4 

-4
 -

N
 -

4 
(n

 0
 

a 
0 

M
 0

) 
( 

C
F

 -4
 -

4 
-

00
 a

 
0 

W
 

A
- :

&
 [ 

i 
n 

4 
Z

-0
 3 

m
 

a
; 

G
i 

j 
jS

 
w

 
0
 

w
 

-4
 

-j
 

-4
 
m

 
m

 m
 m

 a
i 

m
 

m
 

m
 a

i 
-4

 
4
 

-4
 

-4
 

w

*
 

N
N

N
 

a 
m

 
se

m
 

v
m

N
N

 
N

O
5
O

:Q
E

 
O

R
U

 
U

 
U

 
, 

O
=

=
 

N
-m

m
J
N

--
m

J
--

J
 

o
e

U
 

C
O

 M
 

M
 -

4
N

_
 1
 

-
4
-4

- 
N

N
 

N
1
- 

N
 

W
 M

 U
i 

I 
0
 6

 
j5

 
M

 
M

 
m

 
m

i 
U

j 
'q

 
F

o
 2

5
 E

O
- 

[n
 

M
 

W
 

M
 

W
 N

 
-4

 
N

 
N

 
-4

 
M

 
M

 
M

 
N

 
-4

 
N

 
-4

 
N

 
W

 
W

 W

--
- 

--
- 

--
- 

-
--

--
--

- 
--

 
-

-
-

-
-

-
-

-

N
N

 
as

 
em

 
o
a 

e 
e
m

 
ss

 
m

e 
8
: 

E
 

4
5
 

(3
D

 
am

 
m

 
N

N
 

N
N

N
N

N
N

U
m

U
ss

 
.

.
ko

 t
 

to
 

ko
 0

 
w

 c
 0

 
w

 c
 

w
 

w
 a

 
.. 

...
 

.
a 

.. 
.

..M
..Z

 
-

4 
M

 
w

- 
w

 
w

 
w

 
w

--
 

N
 N

...
. 

...
 

...
 

w
 

w
w

w
 

N
 

N
 

N
 

N
5 

3D
 

U
co

 
m

m
w

w
c
c
m

 
oN

 
N

m
 

N
 

0 
0(

 
k3

 
M

 rI
 M

 G
. 

U
;-

Z
-Z

 
F

 
m

e
4
 

3 
5i

o 
\J

1 
-

a 
m

 
m

 
e 

5 
N

-N
-a

 
m

-m
-m

H
~

 ~
 

Q
Q

 
O

rO
Q

U
 

U
,,
U

U
 

fi
 

N
-W

 
N

U
~

. 
W

~
O

 
O

 
O

aa
 

a
a
a
a
 

~ 
~~

~ 
j 

j 
~ 

Jd

C
 

aO
o 

-,
 

iU
v

v
U

 
U

.~
 n 

t,
, 

,U
U

O
e 

O
Jw

cv
B

K
c,

*.
G

G
 

ea
 

ee
 

jjs
 

em
~ 

w
 

v 
m

e

C
+ o

, 
G

~U
 

,0
,-

0 
0 

0 
E

. 
5 

-
j-

 
j 

-3
 

r 
F

5i
 

: 
W

 
F

 Z
 

Z
n 

F
O

 
6 

M
 M

 M
H

 
Z

; 
M

 M
 r

 
5 

c 
M

 
M

 
M

 C
 

w
3 

0
 

-
F 

F
o
 Z
 

3 
Z

 
G

 
7
-U

F
O

M
 

) 
C

,

-
-

-
-

-
-

-
-
-
-
 

-
-

-
--

--
--

f-

0
 

C
A

 
a
 

U
 ; 

a
; 

a 
Z

 
Z

8
 

F
3
 
8
 

P
3
 U

 
M

 
A

 
M

 
M

 
M

 
F

5
 
M

 
M

 
M

 
F

l 
5
 

r -
1
 

5
 

6
 

1
~

j~
i 

3
 
i 

i;
 

3
 
M

 
5
 

M
 

M
 

U
4
 M

 
Z

 
Z

Z
 

G
 

ii
 

U
i

4 
R

 
0 

P
. 

0
)0

0
)0

 
8
0
 8 

0 
) 

d 
G

oM
 

iM
 

M
 

n 
G

 
C

 
N

U
JU

) 
C

0
 

0
 

G
nN

Q
-N

 
N

 
-W

 -W
m

Z
m

- 
W

m
0

0
 

-
-

-
-
 

-
-
 
-

-

(D
 

b 
N

 N
 

3 
P

3 Z
- 

Z
 z

i 
8 0

 
-

Z
- 

-q
 

-W
 -W

 -W
 

w
 

F
-0

 
W

- 
M

 a
; 

a
 

F
 

a
; 

F
 

M
 

U
d
i M

 
F

n
 6

-,
 G

i 
G

-r
 6

 
G

i 
G

i 
G

i 
6
 

G
 

G
i 

U
i 

F
 

6
; 

5
; 

F
 

Z
4

Z
i F

O
 F

O
::

 
: 

: 
F

 
5
;F

 
F

 
C

n
 F

n
U

 
U

 i 
U

I 
F

A
 5

i 
a

; 
F

 
F

 
F

 
F

 
7
7
;i

 
z 

au
, 

im
 

0
1
 

0
 

l 
4
 

0
 

v
 

a
; 

a
0

O
 

8 
~

y
~

~
ab

n
aa

B
R

E
E

R
E

G
B

B
B

B
B

B
E

R
R

Q
U

E
rm

am
m

an
aM

 
m

dw
w

a~
xa

" I
i 

=
=

6
5
E

 
1
0
 1

0
 W

 
ID

 I
( 

ID
 w

 
0
 

0
 

0
1
 

a
 
w

 
w

 
a
 

E
 

a
 

iu
 

M
 

M
S

 
L

-n
U

-1
 -

-N
 

-4
 

-a
 

-A
 Z

- 
M

 
3
 

=
 

to
 

w
lv

 
0
 

w
 

.0
o
 

~c
 

ar
a 

0
 0

 
0
 

0
 

w
 

w
 

0

m
 

a 
a
ss

e
ss

e
m

b
~

m
m

u
m

"M
E

8
8
0
a
Z

 
59

9a
am

r~
am

m
am

a 
a3

dm
aa

P
) M

 
E

5
 

-1
 

4
0
 L

O
 U

 
0
 3
 

M
 

o
, 

0
 

-4
 

-4
 

-4
 

M
 C
C
W
W
W
W
4
4
 

k
O

 5
 

E
 

F
 

M
 

6
4
 Z

 
G

 
a 

:3
 :

: 
a
 

G
i 

M
 7

A
 i

z 
=

 a
 

w
 

w
 
O
W
W
W
M
W
 

C
. 

w
 

w
 

w
 
1
0
 I

D
 1

0
 

1
0
m

 
a

oo
c 

em
o
te

w
 

e 
e 

oc
oz

z 
E

G
E

G
G

E
R

R
R

 
E

G
E

G
G

~
zz

a 
s
e
s
s
e
e
 

00

0
~

~
~

 
M

 a
W
 

m
,
 

-4
 

N
 

-
-4

 
1
N

 
-4

 
N

 
, 

4
 

-4
-4

 
W

 
W

 
W

 
=

 j
; 

M
 

Z
G

 
F

 
::

jF
 

U
 
: 

F
 

a
 

W
 

W
 

W
 

M
 

W
 

W
 
-4

 
-4

 
-4

 
-4

 
-4

 
-4

 
-4

 
-4

 
M

 M
 

M
 

W
ci

- E
n 

a
 

W
 

W
 0

0
 

4
 

-4
 

-4
 

-4
 

M
 

0
 

M
 (

A
 

n
 0
 

1
 0
 

n
 
(n

 
-4

 
-

w
 

w
 
k

O
 

5
 
3
 

M
 C

4
:E

 
F

1
 

-.4
 

::
4
U

; 
G

 
:K

 
M

 
i 

j 
E

j 
1
0
 I

D
 

M
 .

-4
 

-4
 

4
 

-4
 

N
 

M
 

0
 

0
 

N
 

-J
 

-4
 

4
 

-4
 

-4
 

W

L
n
ew

 
W

O
W

U
 

W
N

W
 

v
 

m
m

o
m

a 
m

 
m

 
z 

G
E

 
E

 
M

 
r,

=
zz

 
e 

em
 

m
 

w
 

3
 

W
 

-N
 

M
 

n
W

 
W

 
O

 
O

M
M

M
O

-O
- 

.I
I,

 
.a

w
u
~

 
n- 

m
 

..
n 

m
 

m
 

m 
m 

e 
m

 
-

.. 
m

 
r- 

-
r-

 I
. 

-
1,

 
m

m
 

, 
1,

 1
m

m
m

m
m

m
 

m
m

s
.a

s
s
,M

a
 

o
~

M
W

O
U

 
w

o
o
A

4
 

u
 

m
e
 

A
 

A
 

n
 

n
( 

L
 

M
4
4
W

0
3
5
:&

5
 

: 
F

o
aq

F
 

2
 

M
 

M
 

-4
 

m
e 

e
m

M
 

M
0
e 

W
W

L
 

n
 

U
 

W
O
M
 

e
M
O
 

M
 

em
m

un
 

L
"u

m
m

 W
 0

 
M

-4
4C

oo
3=

:&
a 

q
 F

a
m

 
r 

m
a
 

s 
m

5
m

m
;
 

1
e 

a
a
 

m
e
e
M

 
L

 
n

U
U

 
n
 

U
t 

b
h

 
A

A
 

A
-b

 
n
 
L

 
L

n
U

a
 

O
b

-4
 

4
 

k
O

2
5
 

M
 

Z
 

F
o
 

j 
6
 

r 
3
 

W
 

4
 

-
0
 

a
 

n
0
 

n
 

n
L

n
k
n
L

 
L

 
V

 
m

 
0
)

a
m

 
M

 
L

 
n

U
 

U
I(

n
m

q
1
-h

A
 

sA
 N
b
L
m
L
n
L
n
L
 

0
0
1
-4

-4
M

 
0
M

 
S

 
;5

 
Z

 
F

 
a
; 

Z
5
 

-
-M

 
-4

M
 

M
 

0
 

M
 M

U
 

n
m

 
( 

U
L

n
 

u
 

L
n
m

n
W

 
0

-
4
M

~
M

O
U

f 
w

iw
F

 
W

L
"
W

M
 

w
o
l6

 
N

-W
 

M
f 5

n
j:

9
n

6
n

 
F

t 
t
m

o
 

-
:q

 
5
M

- 
5
 

0
W

 
N

-4
 

4
 

0
M

 ti
i
i
 

f
M

W
 

0
W

U
i 

W
 
U

I 
W

 
M

0
M

 
M

 
-

co
 

-4
-4

N
 

-m
- 

n
-
r
-
 

e
n
sm

 
m

 
-

-m
 

-
F

. 
0
--

0
-0

w
 

-
m

s 
r
 

m
 

m
m

m
 

4
--

J
] 

4
4
N

-J
 

-4
 

-
-4

 
M

o
4
-
4
0
o

 
m

 
.u

 
M

 
N

 
-

W
 

.
G

i 
7
 

Z
 

M
 

M
 

5
 

3
 

1
 

IJ
 

-4
 

-4
am

e 
m

a
s
w

s

n
IN

N
w

 m
 

a
 

m
e
 

e
 

ea
 

s 
m

 
M

 
M

M
 

M
 

N
:[

 
g
 

c 
Q

 
E

a-
: 

,w
 

N
 

Z
 

S
E

 
~ 

a 
m

W
E

 
e 

a 
w

 
s 

m
 

sE
 

m



-0-

-5-

I I I I

18 12 6 6 12 18

Azimuth Angle - Degrees

Fig. 29 LSE1,1 Difference Pattern



15 -1o0110 99. 888 77 11181241 2 2 43S2 ar 3 Is161413 11010 99 S a 88 86 8 eas99 j910101 999 8 88 7 77 7 8 8 9 2131512 2 727:I13s151121:099818 7 77 $8 88 8 999
99 9988 7777 7777 7? 789 1012130 1 21M23 17115121109 8 8 77T 7777 7888 889
998 888 7776 C6 6 Xt778 0IlI 3!521273,'a2Z171531I 19987 7764 C 77 7777848 88
.R9 g-L_77 _A1_f -LEAl. LL IQIA I-J .L 3El1 1PltLJ J J1-i .9 L &- &M-. 1- 7 t L.9 44-

18 8 777766 555555 677 9,101o4Z 131 - 810 8877 68 6 6 6 6 6 77 r 777
8 o 7 7776 6 5 5 555 5 G67 9 101214IM 7232:l 5 IL3 110Io 8 86 5 5 5 5 5 6 6 67 7777
7 7 7666 6 5555 5 5 5 5 6 5 5 T 91Io1 L 27a3l1: 1:15131110 8 766 5555 555 6666 777
77 6 6 5554 44444 5 66 8 9 113I 303 1512119 7766 55 5 5 5 5 66 666

77f666 !55 a 4 4 I-- PiI ",, if) At r.n r , , 4 A 4 4-.;- r ,
10 -66 6555 44 44 4 4444 4 4 45 6 10 2'22 1412109 7 6 5 45 4 4444 55s5 556

66 5555 4443 355 4 455 '7830I2 86131 131108 55 4 44 3 3 4444 4 4 55 555
65 5554 4333 3333 1445 7891117 I2121131198 6554 33 333 33 4444 555
55 5 3333 3333 5345 68911 1723 1 11311 9 8 6544 3 3 3 3 3 3 3 44 444
5.2 . 3 _9411.. LL13 A.A T 1 21,33 1 11 .d. .. LZ~L--2 -23 3- --3.4-4 .4-4-4
55 4444 3322 222 2334 678100 Z?2Illl1087 544 3 2222 2223 3333 444
14 443 3 3222 22 2 2334 St 810 IG22M ol21087 54 33 2222 2222 333 344
44 43331 2222 ( It i 2253 56810 i223 121086 4433 2222 2222 233 333
4 4 4 3 33 2 2 2 2 I I I1 22 3 3 568101 2213320 19 1 8 6 4 3 3 2 ; 21 2 2 2 2 2 2 3 333
43 32 J211 ILLL P 19.t2Lm L 92 2. z --

m -- 33 3 3 2 2 2 21 11 9 7 6 III4 79 11976 4322 2 2 2 22S33 3222 2 II I 001 123 4 7 9 4 579 1 1 9 9 7 6 4 3 22 I 2 2 2 2 2222
33 2222 11111 I 0 00 2 2 4 5 7 9 1420 191 11975 3 3 2 1101 1 2 222

S3 3 2 2 2 1 1 11 0 C 0 0 0 I I 2 14 5 8 I 142331 t1 8 7 35 3 32 I I 00 0 0 00 1 I1 11 1 2 2 2
o 33 22JQ _ 9 2O_2L__LDA4_ B1 LM E 1 .a -1 -2_2. A _. 00 1- " J-42

132 221 1 1000 0000 I 12 4568114 3 10I 0865 322 1 0000 0000 11II 11111
22 2211 1000 000 1 012 346814 193119110865 3221 0000 0000 I0 1 111
2 2 22 I 1 0 00 0 0 0 0 0 01 2 3 4 6 8 I 1420 3 1108 6 5 3 2 I I 00 0 0 00 0 0 0 I I I

) 2 2 2 1 I 1 0 0 0 0 0 0 0 00 11 3 4 6 8 119 I 10 8 65 3 2 I 0 0 0 0 0 0 0 0 0 1 1 1 I II
2 2 i lmAA F n 0 0 0 A 4-02J L1 L<)I t22'Jrl L r,. JL. D. 0A.a_0 A III1 0 -2 2 11 001 0 oG u 0 0 II 3468113192311 10865 3 2 1 0000 0000 00 I I
22 2112 0000 0000 0021 3468 1 312031 10865 321 0000 0000 00I1112l
22 22211 1000 C 00 012 34681 131827 I 10885 3 211 00 00 00001 11 fI I
22 2211 10001 0000 .012 3 4 6 s 13 11 865 321 0 0 0 00 0 0 0 0 1 1 I4A 3 2 2 2 1 1 I 0 000 12 a_3) qL/ -t53.2?.LL 0O.O1 al n 9.LL jLLI
33 22221 1100 00 0 0122 45681 141 19I 11875 3221 0000C0000 0112222
3 3 222 I 1 I C 0 0 0 I 12 456 8 1 14 19 1 11975 3 2 2 OC 0 00 0 0 0 1 111

S33 2 222 2 1 0 2 2 4 5 6 711 II 9 7 5 3 3 2 110 00 000 1 I I
131322 2 11 111 i t] 122 4509 l41 09i976 4322l 100 11 1 122< 5 3 322 2 I 2 1 1 12 1 2 2 2 4 5 79 141 9 119 6 4 332 I 0 I I 2 I 2 2 2
-n S -1 2 A3 A.3 .7 I A e 1_: .. a ,J LF L I? . I I I I I ! I " Ig_
-4 ' 333 2 2 2 I I I I 2 2 3 5679 I 27 : '1 11 9 8 44 3 3 2 1 # I II I I I 1 1 2 2 2 2 2
4'14 43 5 2222 11 i 2 233 56791r lI 12986 4433 22 1 t 1i 1 I 2 2 22222
; 4 .33 22 ?22 2334 6912I z211IIa 87 4332 2222 2222 2222 3 33

55 4443 5332 2 222334 5781015 2121131097 5443 22222222222 33355 53 222 3 334 5 7810 102211 13109 5 4 A3 2 2 _2 2 333

ss 55444433353333344 678101522 131198 55433222222233 333665 555 44435 3 33445 689111r.232 1141108 6544 3333 3333 333 4444

77 6GC 55544444 4556 791012l7 11i2311512119 7665 4444 4444 44445555
77 77 66 6 55 s555 5566 0e91012 417212772 11131110 87 66 55 44 34 5555

10 -21 7.G 72u 5 u S 0 9 5 66 89 II TIA T 776 R 5 s 5 5 5 5 5ss 5 616 6
8 88877 6666 555 6 667 9 10113 I 1?2272; 14121 9 876 6555 5555 5666 666
9 9 8 8887 7766 q 666 6678 91011131'1822226217151311 9 88 7 6668 666 6666 777
99 9988 877? 76 6 17778 S 101112141)18222721 8 1513121q 9987 7666 6666 67777777
10toolto 9999 8 887 t 7777 7889 s03!_34 l92 21~2 _7 161412 110998 .77 .. L _7_ 77 e78188

1lll 1010109 99881 888 8 899 111213151321 2 2 19171513 1i1109 888 7777 8888 899

15 10 5 to 15
Elevation Angle - Degrees

Fig. 30 LSE1,1 Difference Pattern



10

14 
I 

I

0 .4 .8 1.2 1.6

Step-Coupler Spacing - in.

Fig. 31 LSE1 ,1 Coupler Location

53



showed only negligible energy at the E arm and, therefore that arm was

terminated and rarely sampled. Measurements on the network with the

transverse slot coupler showed a degradation of sum pattern shape at the

transmit frequencies and also a drop in efficiency of that channel. It was

determined that appreciable transmit channel energy from the LSE1, 2 mode,

which is cross-polarized to the receive channels, was being coupled to the

E arm of the tee and wasted in the load. The effect of this LSE1,2 coupling

on port 2 patterns is presented in Figure 32.

The signals of the transmit LSEI,2 and receive LSE1, 1 modes have phase

characteristics such that all LSE1, 2 mode energy appears at the E arm of the

tee, while LSE1, 1 energy appears at the H arm, as depicted in Figure 33.

This results not only in the transmit channel efficiency drop but also the

disturbance of the sum patterns, and requires that the E arm of the tee be

treated as a major consideration in further development. While this condition

is undesirable in that is presents another variable and further complicates

the development effort, it does not, as will be seen below, degrade performance

of the final feed network.

By placing a waveguide short at the proper position on the H arm, the LSE 1 2
energy can be reflected back through the tee and reintroduced into the feed

network in the proper phase without disturbing the LSE1, 1 difference pattern

characteristics. Figure 34 is a plot of port 2 gain versus the position of a

variable waveguide short on the H arm of the tee. While the absolute value

of the short location depends upon axial position of the difference coupler,

this plot serves to depict the substantial impact of short position on port 2

pattern characteristics. No interaction of the variable short with port 1 or

port 3 patterns was found.

Construction of the difference couplers utilized to this point precluded simul-

taneous placement in their individually optimum locations, as determined from
Figures 24 and 31. A combined coupler, with both sets of slots, was therefore
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fabricated. Measurements were then made, varying overall length, coupler

location and the position of the short on the LSE1, 1 combiner tee. The

optimum feed network geometry, as depicted in Figure 35, was determined

from these measurements.

Patterns of each port of the final configuration are presented in Figures 36 to

39, for the center and band edges of the respective frequency bands. In

Figure 36, the H-plane pattern is included for comparison with the E-plane

patterns. It can be seen that at the lower edge of the transmit frequency

band, 14. 550 GHz, the E-plane pattern closely matches the H-plane pattern

as desired, while at the higher frequencies there is appreciable pattern

mismatch. This would appear to require merely a shorter phasing length to

accomplish pattern balance, but such a change only aggravated the situation

on the transmitter port and also degraded the receive sum port patterns.

This characteristic was observed to a greater or lesser degree, in all

patterns of feed network configurations which included the LSE1, 1 tracking

coupler, suggesting some form of interactive mode coupling in the transverse

slot pair. This appears to indicate a bandwidth limitation (in terms of

efficiency) for configurations utilizing this type of tracking coupler, but that

limitation falls beyond the 1. 25-GHz bandwidth for which this network was

designed. The phasing length was selected, in this case, to produce equal

dispersion of the 14. 650- and 14. 750-GHz E-plane patterns from the H-plane

pattern at the edge of the subreflector (a= 13.5 degrees).

The receive sum patterns, port 1 shown in Figure 37, demonstrate a good

match between E- and H-plane patterns across the receive frequency band.

The H-plane pattern is identical to the E-plane at the center frequency of

13. 600 GHz and remains within approximately 1 db throughout the frequency

band and well beyond the subreflector illumination angle.

The elevation difference pattern, port 3, which is produced by the LSE 1 , 1
coupler, is seen in Figure 38 to be virtually frequency invariant, the only
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dissimilarity occurring is the height of the shoulder which appears around

30 degrees off axis. The azimuth difference patterns, port 4, produced by

the TE0,2 single-slot coupler, are seen to vary in gain but not pattern shape

across this frequency band. The pattern nulls of both couplers are totally

frequency invariant, within measurement accuracy, throughout the bandwidth,

a characteristic not often found in tracking networks of other types. The

peak magnitudes of both sets of difference patterns are slightly lower than

those obtained with separate couplers; this could most likely be improved

with further effort on coupler location. The difference pattern levels

achieved, however, are quite adequate for the desired sum-to-difference

ratios. This configuration was selected as the design for the deliverable feed

network.

2. 2. 4. 5 Deliverable Network Implementation

A brief survey of techniques appropriate for fabrication of the feed network

was performed upon determination of the final configuration. Internal

intricacy and required tolerances substantially limit the available approaches;

investment casting and electroforming emerged as the two best methods. Even

for a single unit fabrication, casting was the preferred approached from a

technical point of view, but 16- to 18-week minimum delivery schedule for

such a casting made that method unacceptable. Therefore, it was decided to

electroform the feed hardware. Although the electromagnetic performance of

the resulting network was excellent, the electroform process did not prove

entirely satisfactory. The vendor encountered unexpected tooling and proc-

essing difficulties which resulted in nearly 7-week slip in delivery. Addi-

tionally, the part was comparatively heavy, and required several

post-electroforming operations which resulted in local deformities in internal

network dimensions. For these reasons, the investment casting approach

would be highly recommended for any subsequent fabrication. Photographs

of the electroformed network, with the orthomode transducer, LSE1, 1 com-

biner network and polarizer attachment lugs installed, are shown in

Figure 40.
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Results of port 2 gain versus LSE1, 1 combiner short position measurements

are presented in Figure 41. There is an obvious difference in the optimum

short positions for each frequency, indicating that the LSE1, 1 coupler

produces a prime limitation on the bandwidth of the network. The best com-

promise short position occurs at 0. 337 on the variable short micrometer

with a port 2 gain loss of 0. 1 db at the center frequency and 0. 5 db at the

band edges. The variable short was then measured on a network analyzer

to determine electrical length, and a fixed short was machined to provide

that length.

Figure 42 depicts the VSWR characteristics of the various ports of the feed

network. The VSWR achieved in the deliverable unit was somewhat poorer

for each port, particularly ports 2 and 4, than those obtained with the pro-

type unit. This can likely be attributed to the internal deformations in the

tapered section of the feed which occurred during brazing of the mounting

ring. The VSWR of port 1 remained below 1.4:1 throughout the receive fre-

quency band. Port 2 is 1. 8:1 or less across the trasmit band, which is con-

siderably higher than expected from earlier prototype measurements. The

VSWR of this port was quite sensitive to location of the LSE1, I combiner

short; as would be expected, the short location whicn optimized pattern

characteristics also provide the best VSWR. VSWR's of the other three ports

were essentially independent of the short location. The output port of the

LSE1, 1 combiner shows a maximum of 3:1 at the lower edge of the band,

dropping to nearly 1. 5:1 at the upper edge, although the single-slot VSWR

was reasonably good tor each slot of the pair. The TE0, 2 output, port 4,

approaches 2:1 at the lower band edge, appreciably worse than for the proto-

type unit. It is felt that the VSWR characteristics of each port could be

improved considerably with further effort in that area.

The near-field patterns of the deliverable feed network (Figures 43 through 56)

are nearly identical to those of the prototype unit, but do indicate a slight

difference in mode phasing characteristics. The receive sum patterns of
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Figure 43 demonstrate excellent matching of the E- and H- plane patterns

throughout the frequency band. These patterns are essentially side lobe free

as desired, with minor shoulders just beginning to appear at the higher end

of the band. The cross-polarized patterns are typically greater than 30 db

below the desired polarization in each pattern planes. A digital field map of

the port 1 pattern, shown in Figure 44, demonstrates the high degree of

rotational symmetry achieved at the center frequency, wnicn is also typical

of the lower portion of the band, while the higher frequency map of Figure 45

shows the pattern symmetry to be deteriorating. Figure 46 is typical of the

port 1 cross-polarized patterns, showing the cross-polarized response to be

greater than 30 db down in the principal planes and increasing to approximately

20 db down in the ± 45 degree planes.

The port 2 transmit patterns, shown in Figure 47, are slightly poorer than

expected, showing the results of errors in mode phasing. The E-plane

patterns are narrower than the H-planes throughout the band, and the side

lobe level approaches -12 db at the upper frequency. The cross-polarized

component is seen to be similar to that of port 1. The effects of the phasing

error can be clearly seen in Figures 48 and 49, where the departure from

rotational symmetry is quite evident. Some loss in illumination efficiency

is naturally attendant to such pattern distortion, but, as will be seen in a

later section, the reflectors tend to smooth out the primary patterns. The

length of the phasing section should be increased by approximately 0. 025 to

0. 030 inch to improve the port 2 pattern characteristics.

Difference patterns of the LSE1, 1 coupler, port 3, are shown in Figure 51.

These patterns, which provide for tracking in the elevation plane, are seen to

be quite independent of frequency across the receive band, with a stationary

deep null and only minor amplitude variation. The field map of Figure 52

shows the difference pattern to be well behaved considerably beyond the

subreflector illumination area. The cross-polarized pattern shown in

Figure 53 is worthy of comment, in that the cross-polarized characteristics
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determine to a great extent the requirements to be placed on the polarizing

network to be discussed in the following section. It is seen that the cross-

polarized pattern is an azimuth difference pattern of nearly the same magni-

tude as the principal polarization. Therefore, any substantial cross-polarized

energy in the feed network results in cross talk between the tracking channels.

Such cross talk diminishes as an on-axis condition is approached, and only

slowly degrades tracking stability as the polarization purity is compromised.

An axial ratio of 0. 5db for the polarizer provides approximately 25 db rejec-

tion of the cross-polarized components, and is quite adequate for suppression

of interchannel cross talk.

Azimuth plane tracking signals are derived from the TEO, 2 coupler, port 4.

Patterns of this port, shown in Figure 54, are similar to those of the LSE 1 1

port, with stable, deep nulls across the frequency band and only minor

amplitude variation. The preceding discussion of cross -polarization applies

equally well to this port.

In general, the pattern characteristics of the deliverable feed network are

considered excellent, and well within the goals of the contract effort.

2. 2. 5 Polarizing Network

The contractual statement of work requires that the design be capable of

providing any combination of right and left circular polarizations for the

transmitting and receiving channels. There are two primary considerations

concerning performance of the polarizer. Very low ellipticity is required

over the receive frequency band in order to maintain tracking nulls of satis-

factory depth. An ellipticity of 0. 5 db is an acceptable level in this context,

while a value approaching 0. 1 db is desirable. Ellipticities of 0. 5 and

0. 1 db result in cross-polarization levels of approximately -25 and -40 db,

respectively. Ellipticity is directly proportional to loss in efficiency;

therefore, it must be held as small as possible over both transmit and

receive frequency bands.

A variety of techniques are available for producing a circularly polarized

field, most of which are somewhat limited when a flexible, broadband device
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is desired. Dielectric slabs or other phasing devices in waveguides or

horns generally have limited bandwidth and are difficult to adapt for right and

left sense changes. The optimum technique would involve a separable,

external device which would impart circular polarization over a large band-

width to a wave emanating from an arbitrary linear radiator. The charac-

teristics of beam shaping would then be determined by the primary antenna

and the circular polarization would be produced by an add-on device with

minimal effect on other properties of the primary radiator.

Several such transmission polarizers have been reported in the literature

(References 15 through 18), all based on the concept of a polarization-

sensitive space filter which produces a 90-degree phase difference to orthog-

onal components of an incident linear field. The simplest configuration

consists of several grids of parallel wires oriented at 45 degrees from the

plane of the E-field. That component of E-field which is perpendicular to the

wire grating passes essentially unperturbed, while that which is parallel to

the grating experiences the required 90-degree phase shift. The more complex

configurations utilize grids of meander lines (a square wave type of line) or

of rectangles and straight wires. While the more complex configurations

appear to offer the potential of better performance than the straight wire

version, the published data available at the outset of the program showed the

experimental results achieved with the straight wire configuration to be at

least equal to those of other implementations. Therefore, the straight wire

grid configuration was selected for development.

An experimental model of a wire grid polarizer (Figure 57) had previously

been fabricated and tested under an MDAC IRAD program. Based on a some-

what limited analysis, a basic configuration of four grids with wire spacing

(w) slightly greater than X/2 and approximately X/4 grid spacing (s) was

selected. This model, designed for operation between 14 and 15 GHz, was

fabricated to allow variations of these parameters about the basic values.

Wire diameters (d) larger than 0. 050 inch were found to cause unacceptable

reflections back into the horn with small horn-to-grid spacings. Separation

between horn and grid (h) also had a significant effect on performance. Data
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obtained with that model, shown in Figure 58, show an ellipticity less than

1 db over a bandwidth greater than 1 GHz is achievable, or a selected fre-

quency band several hundred MHz wide could be held to approximately 0. Idb

at the expense of increased ellipticity at other frequencies. Performance of

the polarizer was extremely sensitive to minor changes in device geometry,
to a far greater extent than indicated by analysis. Edge effects from the wire
ends, strong interaction between horn and grids, or other resonance type

effects were suspected as the cause of such sensitivity. A number of experi-

ments was performed to determine the source of the disruptive effects,
including the use of absorbers, conductive coatings, etc., but although the
effects were gradually reduced, their source was never specifically located.

It was found that completely enclosing the outer dielectric supports with a
conductive material, simulating a continuous metal frame around the grid
network, provided more predictable results than the open grids of Figure 57.
Data obtained with the conductive shell configuration are plotted in Figure 59;
the ellipticity is seen to be quite low, particularly across the lower two
thirds of the frequency band.

Up to this point, all polarizer measurements had utilized a horn which was
small compared to the polarizer aperture. It was found that the data of Fig-
ure 59 could not be duplicated when the larger horn of the feed network was
used. It is very undesirable to increase the size of the polarizer or to sub-
stantially increase the spacing between horn and polarizer, in order to
reduce interaction between the two elements, since these solutions would
increase the aperture blockage. A circular grid aperture, with a diameter
equal to the diagonal measure of the horn, was found to diminish (but not
eliminate) the criticality of the various parameters. These effects were
never overcome to the point that the device could be described analytically
in more than gross terms. Another difficulty arose with usage of the feed
network; the ellipticity achieved with ports 1 and 2 was slightly different
for a particular polarizer configuration. This can readily be attributed to
minor field perturbations in the vicinity of the difference coupler slots and to
any slight deformation of the square guide or horn structure which might alter
the local field polarization. While these differences were relatively small
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(on the order of 0. 25 db), they required separate measurements and the

ensuing compromise to determine optimum parameters for total subsystem

operation.

The final polarizer configuration, mounted on the prototype feed network, is

shown in Figure 60. This configuration used a tapered spacing between grids

which seemed to improve the bandwidth characteristics. Drill rod was used

as the wire elements in order to maintain the wire geometry to a satisfactory

degree. Figure 61 depicts the network configuration, and the final eccentric-

ity data are plotted in Figure 62. In order to facilitate handling and prevent

damage to the wire structure, slabs of 2-lb/ft 3 foam dielectric were used to

fill the spaces between rows of wires, and the entire unit was covered by a

single ply of 4-mil fiberglass cloth. The final data are not as good as those

achieved with the configuration of the prototype polarizer upon which the

deliverable unit was based, which exhibited less than 0. 5-db eccentricity

from 13. 2 to 14. 0 GHz, and between 1.0 and 1. 5 db across the transmit fre-

quency band. This difference appears to be due only to manufacturing toler-

ances and indicates the remaining degree of geometrical sensitivity. Further

effort toward optimization of the polarizer network would appear to be

significantly beneficial.

Effects of the polarizer on the VSWR and isolation of the various ports of the

feed network are negligible. Pattern change due to the polarizer was less

than the pattern measurement accuracy in the principal polarizations; cross-

polarization levels increased from the -30 db of the linear configurations to

the area of -25 db for the circular version. Digital field maps did provide

an indication of slight off-axis, nonprincipal plane pattern distortions due to

the polarizer, resulting in small, local departures from the desired rota-

tional symmetry. Tracking null depths remained essentially the same, some

greater and some less than those of the linear network, but all better than

-30 db which provides very accurate and stable tracking.

The deliverable circularly polarized feed assembly is shown in Figure 63.

The feed assembly is presently configured for receiving right-hand circular
and transmitting left. To adapt to left circular receiving and right circular
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transmission requires only that the polarizer be rotated 90 degrees with

respect to the feed network. Care should be exercised to maintain the

3/16-inch spacing of horn to polarizer after making this change.

2. 2. 6 Tracking Network

The function of the tracking network is to combine the azimuth and elevation

difference signals with the receive sum signal in such a way as to provide

the composite signal required for single-channel monopulse tracking. To be

compatible with the existing Apollo transponder and antenna electronics, the

RF difference channels must be alternately added to and subtracted from the

receive sum channel, resulting in four possible states of combination:

+ elevation, + azimuth, - elevation, and - azimuth, in that sequence. Con-

trol signals for the sequence are provided from the NASA-MSC antenna elec-

tronics in the form of two 50 Hz, +3V to -50V square wave signals (FTD I and

FTD II) in phase quadrature. The network required to perform this function

is shown in Figure 64.

As originally conceived and proposed, the network was to be implemented

with ferrite devices for the switching and phase-shifting elements. A survey

of available components and complete networks and extensive discussions

with device manufacturers resulted in several potential configurations, most of

which would require some measure of device development for operation at

our frequencies. The criteria used for selection were primarily cost of

implementation, network complexity (including required peripheral hardware),
and reliability.

The basic configuration considered (Figure 65a) utilizes a three-port

switchable circulator as the switch, followed by either a circulator or a

differential phase shifter. Components for this configuration are available

with minimum component development, and the cost of RF components is on
the order of $3, 000. The major disadvantage encountered with this imple-

mentation involves the sensitivity of absolute insertion phase of the ferrite

devices to temperature variation. Since relative phase must be maintained

between tracking error signals and the reference sum signal, variations in
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insertion phase between the feed network and receive channel combiner must

be avoided. Most manufacturers of ferrite devices enclose them within active,

temperature-controlled packages, which is unattractive from a cost, relia-

bility, and prime power viewpoint for spacecraft applications. In addition,

it can be seen that the unused error signal is routed, in the three-port

circulator, back to the other error port. Isolation within the switch is ade-

quate to keep this signal from degrading the desired tracking signal directly,

but reflections in the feed network, or close coupling between the azimuth and

elevation coupling ports within the feed, might be sufficient to cause serious

error-channel cross coupling. An improvement on this scheme is shown in

Figure 65b, where a four-port circulator is used for the switch. Here the

unused error signal is routed to a termination and acceptable difference port

isolation is achieved. The phase shift is also accomplished with a four-port

circulator, with orthogonal ports terminated in short circuits placed to provide

a 180-degree phase difference in the two paths. A fixed circulator, with

insertion phase equal to the total phase of the switch and phase shifter and

with similar phase-temperature characteristics, can be inserted in the

receive sum arm to maintain phase balance over the full operating range of

the ferrite material without the requirement for a temperature-controlled

package. Although the devices required for implementation of this configura-

tion appear feasible, development costs were estimated to be between $10, 000

and $25, 000 and satisfactory operation over the desired temperature range

remains questionable.

The most viable proposal for a ferrite configuration was offered by

Electromagnetic Sciences, Inc. That firm proposed a modification of an

existing complete network, as diagrammed in Figure 66. Proposed insertion

loss (1 db maximum), isolation (20 db minimum) and other pertinent specifica-

tions for this unit were excellent, but for an operational temperature range

of -40' to +1260F, a 115 volt, 2 amp (maximum) heater supply is required.

The unit is housed in a rather large container (which could be minimized for

flight applications) and required additional power conversion and logic inter-

face equipment for compatibility with the Apollo-type hardware. The price

of the network was quoted to be $3, 500.
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An alternative to the ferrite configuration, utilizing diode SPST switches, is

shown in.Figure 67. This configuration offers the advantage of minimal

phase-temperature sensitivity with no heater requirement, insertion loss

comparable to that obtainable with ferrite devices, unused difference channel

power is terminated rather than reflected back to the feed, and the network is

relatively inexpensive, compact, lightweight, and producible. The only

active elements in the device are four diode waveguide shorting switches.

Azimuth and elevation difference signals are input to the E and H arms of a

folded hybrid tee. The output arms of the tee each feed a hybrid coupler

whose outputs are terminated with a diode shorting switch followed kg/4 later

by a fixed-waveguide short. Turning on the diodes thus changes the location

of the short position by 90 degrees, and results in a 180-degree phase shift

at the coupler output. Coupler outputs are connected to colinear arms of a

second hybrid tee, of which one output is terminated in a matched load.

Depending on the state of each pair of diode switches, either azimuth or

elevation signal in either a 0- or 180-degree state is routed to the output

and the other difference signal is routed to the termination. Since the phase

shift is determined only by the spacing between diodes and fixed shorts, the

device is quite insensitive to temperature variations, but is limited in operat-

ing bandwidth. As will be seen, the bandwidth achievable is adequate for this

application but not for much more. Insertion loss of the network is dependent

upon the state of the diode switches, being minimum when all diodes are

shorted and maximum when all diodes are open. This results in a slight bias

to the tracking null of one channel at large boresight angles but disappears

as the boresight condition is approached. The cost of implementing this con-

figuration was estimated at $3, 000.

The final choice for implementation of the tracking network was between the

ferrite configuration offered by Electromagnetic Sciences, Inc. and the diode

configuration described above. Costs of the two versions, both for the bread-

board unit and for subsequent production, are approximately the same. The

ferrite configuration offered better bandwidth and required no development,

so that its performance parameters were reasonably assured. Insertion loss

of the diode configuration was somewhat questionable, as was its bandwidth
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capability. Reliability of the individual devices appeared to be equal, based

upon the information obtained from various suppliers, but the increased com-

plexity of the ferrite configuration (primarily in the thermal control hardware)

suggests a lesser reliability factor for that network. It was decided to build

the diode configuration so that its performance could be evaluated against the

benefits of eliminating the thermal control system of the ferrite configuration.

Satisfactory diode switches were obtained from Microwave Associates, Inc.

Specifications for the switches included an insertion loss of 0. 5 db maximum

and a minimum isolation of 20 db across the 13. 5- to 13. 7-GHz bandwidth.

Measured parameters of the delivered devices ranged from 0.3- to 0.45-db

insertion loss and 24- to 28-db isolation.

The network was first assembled with variable waveguide shorts in place of

fixed shorts. With the variable shorts set at X g/4, the data of Table 5 were

obtained. It can be seen that the insertion loss is generally higher than

desired, varying from 0. 5 to 1. 7 db, the phase shift in the azimuth channel

varies ±20 degrees at the band edges, and interchannel isolation is not

sufficient at the band edges. The expected insertion loss unbalance between

the two states of the azimuth channel is also quite evident. Empirical

optimization of the short positions resulted in the improved performance of

Table 6. Fixed waveguide shorts were then machined to match the electrical

lengths of the optimum variable short positions.

The results achieved with the diode configuration are seen to be comparable

to those of the ferrite version over the bandwidth required. The channel

isolation can be seen to be approaching -20 db at the band edges, however,

and it appears that for a requirement involving any substantially wider band-

width, the ferrite configuration would appear more appropriate.

Operation of the tracking network is pictured in the scope trace of Figure 6 8 a.

For this demonstration, receive sum and difference signals were developed

in the network of Figure 68b. The two difference signals were modulated

with different audio waveforms for identification. The upper trace in the

photograph is one (equivalent to FTD I) of the two control signals, the second
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Table 5

PRELIMINARY TRACKING NETWORK PERFORMANCE

13., 500 GHz 13, 550 GHz 13, 600 GHz 13, 650 GHz 13, 700 GHz

SQ 6001 170 0 1

Switch 0. 65 0 374)t

State . 0 0 .2 .2 o o 0o- o
4J. _V -4 4J V .Q) .4

Pair Pair o Cf 00 00 m 0 0

o c o o d od O o o O o P o O o oP

Channel A B Q 4 - H o o

+ Elevation High Low i. 55 180 15 i. 60 180 19.4 1.40 180 24.8 1.25 180 21 1.70 180 15.9

+ Azimuth High High 0. 65 0 32 1.00 0 38 0. 67 0 45 0. 60 0 42 0. 50 0 34.2

- Elevation Low High 1.40 0 11. 6 1. 50 0 17.4 1. 15 0 26.7 1. 10 0 21 1.40 0 14

-Azimuth Low Low 1. 60 159 27 1.70 171 30 1.60 180 33.3 1.50 188 36 1.30 197 32.8
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Table 6

FINAL TRACKING NETWORK PERFORMANCE

Center Frequency Band Edge (Typ)

M 0

Switch State ." 0 - 0o 0 o

Pair Pair U) o o )
Channel A B Q .I

+ Elevation High Low 0. 25 180 23 1. 20 180 22
+ Azimuth High High 0. 50 0 25. 5 0. 65 0 25
- Elevation Low High 0. 60 0 30 1. 30 0 22
- Azimuth Low Low 0. 50 179 36 0. 75 172 27

of which lags that shown by 90 degrees. At the leading edge of the control
signal, the azimuth error signal is added to the reference sum. During the
next quarter cycle, the elevation error signal is subtracted from the refer-
ence. The following quarter cycles subtract the azimuth and add the eleva-
tion, in that order. The control state sequence is given in Figure 69.

An interface electronics assembly is required to convert the +3V, -50V,
50 Hz square-wave outputs of the tracking electronics to outputs required by
the diode switches. In addition, a power supply module is required to provide
±15V power to the switches. At the time this assembly was designed, the
power requirement of the switches was unknown, and the supply was selected
on a very conservative basis. Input power to the interface electronics is
115V, 60 Hz, and the required output was assumed to be 300 mA maximum on
each arm of the ±15V. The actual total requirements of the four switches is
120 mA at +15V, and 26 mA at -15V. The power module must also provide
supply voltage for internal logic circuitry. The internal logic circuits will
operate from +5vdc supply which is derived from the +15vdc regulated output.
Total current drain from the logic power will not exceed 50 mA.
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A Monsanto MCL 600 integrated circuit (IC) is used to accomplish the logic

conversion. This IC contains an optically isolated logic gate, which main-

tains a high degree of isolation between the input and output of the converter

circuit. The circuit schematic is shown in Figure 70, with an equivalent

circuit of the tracking electronics signals.

When the input voltage is at +3 volts, input current, IF to the MCL 600 is

E2 VCE(SAT) VF
IF = RR 2

3.0 - 0.4 - 1. 15
K= 1.45 mA1K

The worst-case current required to switch the MCL 600 is 1. 2 mA; there-

fore, the output will change from logic 1 (3. 5vdc) to logic 0 (0. 2vdc). When

the input is switched to the opposite condition, the input LED is reverse

biased so that the output returns to the logic 1 state. Input diode reverse

voltage is limited to one diode drop by DR1. The maximum reverse voltage

for the LED used in the input to the MCL 600 is 3V.

A test circuit was included in the design of this assembly to provide simulated

FTD I and FTD II signals. This circuit, when operating, will switch the

optically coupled isolation circuits so that the TTL compatible outputs are

switched at 50 Hz in a phase quadrature relationship similar to the FTD I/

FTD II input signals. This circuit consists of three integrated circuit

packages and several discrete components. Two one-shot multivibrators

are used to produce a 100-Hz clock pulse. This clock pulse is then used to

clock a dual J-K flip-flop circuit to provide the desired output. A schematic

diagram of this circuit is presented in Figure 71.

It is necessary to provide +5 volt dc power for the operation of the logic level

converter circuits as well as the integrated circuits used to provide the test

output capability. In order to conserve power, the test circuit design

incorporated low-power TTL circuits. The total IC current requirement is

18 mA for normal operation and 43 mA in the test mode.
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An LM309 5-volt regulator is used to derive 5V logic voltage from the 15V

supply. This unit is available in the TO-5 package and is capable of supply-

ing 50 mA of current at 50'C with no heat sink. No external components are

required for the operation of this circuit; however, a 10-lif capacitor will

be used across the output to provide decoupling for the TTL circuits.

The integrated circuits and discrete components for this assembly are con-

tained on two connectors which are designed to accommodate dual in-line

packages. The layout of the hardware is shown in Figure 72. Input/output

connections are made through the use of a 16-pin component socket adapter

and discrete components are mounted on the same type of adapter. The large

adapter card, covering pins 1 through 8 of rows A, B, C, and D, contains the

crossover wiring for insertion of the test output signals. When this board is

in place as shown, the simulated FTD signals will be present at the output.

For operation from the external inputs, this board must be removed. Dur-

ing normal operation, the test circuits are not powered. The switching logic

signals are brought out from the electronics board to two OSM coax connec-

tors, and are connected to the switches through solid-jacket coax cables.

This assembly, including power supply, electronics, and microwave switching

hardware, is packaged in an aluminum housing which will provide protection

from the elements during outdoor, year-round range measurement usage.

The directional coupler for combining the sum and difference signals is

mounted to one side of the box. Tracking signals and prime power are intro-

duced to the assembly through two hermetic connectors. Mating plugs for

these connectors are provided. The complete tracking network is shown in

Figure 73, with all ports and connectors appropriately designated.

2. 2. 7 Antenna Assembly

The antenna reflector and support structure delivered under this contract was

of conventional aluminum construction; no attempt was made to optimize the

structural weight characteristics of that assembly. It was required, how-

ever, that the configuration selected must have the potential of lightweight

implementation, and the lightweight design data are provided.
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2. 2. 7. 1 Deliverable Configuration

Design of the deliverable antenna assembly, fabricated primarily of aluminum,
is shown in Figure 74. This configuration differs from the lightweight

version only in material and minor details which are due to the material

difference, and 'in several aspects where changes were made for test and

adjustment purposes. The design is based around a commercially available,

spun aluminum reflector, with parameters as determined in Section 2. 2. 3.

As received from the vendor, the reflector contour and surface finish were

considered marginal for the type of measurements desired. In an attempt

to improve these parameters the reflector was sent out to be reworked. The

resulting surface was highly polished, but due to the manner in which the

polishing was performed, the surface contour was improved only slightly.

During alignment and test activity on the range, it was found that the polished

surface presented a danger to personnel due to focused reflection of sun-

light. The reflector was therefore given a light sandblast finish to remove

the high degree of polish.

To facilitate handling of the assembly during test and shipment, the structure

was mounted on a large aluminum plate. The plate was intentionally made

quite heavy to prevent distortions of the reflector and the feed/reflector

geometry which could result in erroneous and misleading test data. The

reflector, feed network, and tracking network are independently mounted to

the plate for maximum ease in accomplishing adjustments. A hole pattern

for mounting the plate to an antenna positioner is provided in the plate. The

hole pattern is 17 inches in diameter, with six equally spaced clearance holes
for 3/8-inch bolts. The overall antenna assembly is shown in Figure 75.

2. 2. 7. 2 Lightweight Configuration

The lightweight configuration is based on a graphite/epoxy composite material
which provides a very lightweight structure with negligible thermal distor-

tion in the space environment. The design is a result of an extensive MDAC

IRAD program directed at optimization of weight and thermal characteristics

of spacecraft antennas. Design details of this configuration are provided
below, and a complete discussion of supporting data and rationale may be
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found in the IRAD report, "Research and Development in the Use of Graphite/

Epoxy Composites in the Fabrication of Low Distortion Structures,"

MDC G4035, which is provided as Addendum 1.

Figure 76 gives a general view of the design of the 4-ft-diameter antenna.

Figure .77 shows detailed views of the design. The dish is in accordance

with MDAC proprietary design. The basic material used in this design is

Modmor I graphite continuous filament (tow) tape prepreg with epoxy

resin 828CL. This resin system has to be used if the present established

lost-wax process is to be used. It is to be noted that there are nine ribs.

This requirement of having the ribs in multiples of three's is to maintain

axial symmetry with respect to the tripod supporting the subreflector.

Provisions for attachment of the feed horn were not made because details of

a flight-weight model have not been established. Three attach points are

provided on the antenna for attaching to the space vehicle.

All metal fittings and bolts are made of titanium instead of aluminum because

their a is about 5. 3 x 10-6 in. /in. / F versus that of about 13 x 10-6 in. /in. / 0 F

for aluminum. The density of titanium is about 0. 16 ib/in.3 versus 0.1 lb/in.3

for aluminum. Some weight reduction can be made by drilling concentrically

through some of the fittings. Another approach to the fittings is to make

billets out of chopped graphite fiber and epoxy and then machine them to the

required contour. Some of the fittings may be made in this manner. The

advantage will be a still lower a and less weight.

The reflective face is made of six plies of (00 ± 6 0 0 )s for a balanced construc-

tion. The ribs and rings are made by spiral wrapping over wax rods and

also using tape running in the direction of the length of the member.

A typical joint is shown in Figure 77. This is the joint at which the subreflec-

tor struts attach to the reflector. The other face of this joint serves as the

attach points of the antenna. At the joint the tube is filled with a preform by

making a preform billet in a press and then cutting to the required configura-

tion. This preform is inserted in the rib during fabrication and the joint is
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then reinforced with doublers, as shown. Doublers are used at all rib-ring

intersections. The doublers in general are continuous prepreg tape with

the filaments oriented in the direction of the ring or rib.

Through the spool fits a titanium eye bolt, which threads into a titanium fork

fitting, which picks up the ball-and-socket universal joint at the end of one of

the tripod struts.

The subreflector is supported by three tubular graphite/epoxy struts set

120 degrees apart. The struts have titanium end fittings. The end fitting

attaching to the main reflector is a ball-and-socket universal joint which also

allows adjustment of strut length. The end fitting attaching to the subreflector

structure is a plain titanium tongue-and-fork joint.

All three struts converge to a graphite/epoxy triangular flanged panel con-

sisting of a balanced six-ply laminate. The attachment to this panel is by

means of fork bolts. - Oversize holes are provided for adjustment purposes.

The subreflector is made of a graphite/epoxy six-ply balanced laminate, and

its rim is stabilized with a tubular ring. The reflector is attached to a

graphite/epoxy tubular stem through a graphite/epoxy fitting.

The stem telescopes into a larger-diameter graphite/epoxy tube. This

allows distant adjustment of the spacing of subreflector from the main reflec-

tor. This tube has a slit cut which allows the tube to be clamped over the

inner tube by means of a metal clamp. At the upper end of this tube is a

titanium ball joint for adjusting the angular position of the subreflector. The

ball joint is attached to the triangular graphite panel through oversize holes

for further adjustment of position. A clamping plate is provided to lock the

subreflector in the desired angular position.

As can be observed from the above description, sufficient means of adjustment

is provided to allow the proper alignment of the subreflector with respect to

the main reflector.
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Preliminary estimated weight of the complete antenna is about 6. 5 pounds

with all titanium fittings, and somewhat less if the fittings are fabricated of

graphite/epoxy.

2. 2. 8 Final System Performance

Upon completion of measurements on each component of the antenna subsystem,

which had been performed on a near-field range and assembly of the subsys-

tem, the complete antenna assembly was then tested on a far-field range. A

988-foot range distance was established, which is more than twice the usual

for field requirement (2D2/X) of 480 feet at the shortest wavelength of inter-

est. The antenna was centered at a height of 16.2 feet on a fixture capable of

providing axial over azimuth rotation. Range geometry was aligned within

approximately 2 minutes of arc in both planes, using optical techniques. The

illumination field was then probed over the dimensions of the antenna aper-

tures, and the range was determined to be free of reflections to approximately

- 60 db.

The antenna subsystem was assembled and aligned as close as possible,

using optical methods, to the geometry determined in Section 2. 2. 3. The

linearly polarized patterns obtained with this condition of adjustment were

excellent, as shown in Figure 78. This pattern of the transmit channel,

typical of those taken in four planes (0' , 90' , ±45 ° ) at 14. 650 GHz, shows

the highest side lobe to be 24 db down, with remaining lobes falling off

rapidly. No sidelobes higher than -40 db were found in the forward hemi-

sphere beyond 36 degrees from boresight, and the highest cross-polarized

level is -33 db. The half-power beamwidth is 70 minutes of arc

(1.17 degrees), indicating an aperture efficiency of 84.22 percent. Gain was

measured to be 43.21 db, yielding an overall efficiency of 59.84 percent.

The electrical axis of the antenna was found to be approximately 1/4 degree

off the mechanical axis to which the range had been aligned. With the two-

axis positioner as described above, the beam could not be centered on the

range except at one discrete roll angle. An axial over elevation over azimuth

positioner would have overcome this difficulty, since precise electrical and

mechanical axis alignment is not required, but the time required for
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reconstruction and realignment of the range did not appear justified. The

antenna subsystem was therefore realigned to make the two axes coincident.

The results obtained after realignment of the antenna were not as good as

those obtained previously. The adjustment was carried out by tilting the

reflector to bring the beam to coincidence with the range axis, then adjusting

feed network and subreflector for maximum gain. The gain and efficiency

data for the linearly polarized subsystem, as finally aligned, is provided in

Table 7. The gain degradation incurred by realignment is nearly 0. 4 db at

14. 650 GHz, yielding a value of 54. 70 percent efficiency. The values for the

receive channel at 13. 600 GHz are considerably better, 42. 65 db and

61.09 percent efficiency. Also shown in Table 7 are gain and efficiency

values adjusted to eliminate the losses due to VSWR of the final assembly

which are shown in Table 8. This represents the gain which would be

achieved if the ports were perfectly matched, a condition which could be

approached with slight additional effort on the feed. The final alignment con-

dition is obviously not optimum, but the contractual delivery schedule did not

allow further effort. The achievable efficiency of this configuration, how-

ever, is at least greater than 62 percent and likely to be somewhat higher.

Effects of alignment can also be seen in the final patterns, Figures 79

through 88. The first sidelobe is higher than the original configuration by

typically 6 db, while other near-in lobes were decreased substantially. The

average cross-polarization level increased slightly to approximately 30 db.

Rotational symmetry of the patterns was maintained to a high degree, as will

be seen in the pattern beamwidth summary of Table 9.

The merits of the add-on polarizer approach are demonstrated in the cir-

cularly polarized patterns and gain measurements. The circular patterns,

Figures 89 through 98, did not change appreciably from the linear config-

uration, and rotational symmetry was actually improved due to an apparent

diffusing effect of the polarizer. Sidelobe levels increased to an average

-16 db, an increase of 2 db from the linear, due primarily to the increased

blockage ratio of the polarizer as discussed in Section 2.2.3. It was earlier

pointed out that the polarizer slightly increased the beamwidth of the feedhorn.
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Table 7

GAIN AND EFFICIENCY RESULTS

Port 2 14. 650 GHz Port 1 13. 600 GHz

Original Final

Alignment Alignment Final Alignment

Maximum Gain 445. 44 45. 44 44. 79
(db) X2

Measured Gain (db) 43.21 42. 82 42. 65

Efficiency (%) 59. 84 54.70 61. 09

VSWR Loss (db) 0. 18 0. 18 0.01

Available Gain (if 43. 39 43. 00 42. 66
matched) (db)

Available Efficiency 62. 37 57.02 61.24
(if matched) (o)

Table 8

VSWR OF ANTENNA SUBSYSTEM

Frequency VSWR Frequency VSWR

13.500 1.45 14.550 2.20

Port 1 13. 600 1. 10 Port 2 14. 650 1. 50

13.700 1.30 14.750 1.50

The effect of such broadening is to provide less taper across the aperture of

the reflector, resulting in a somewhat narrower subsystem beamwidth and

slightly higher sidelobes. Table 9 provides a summary of the measured beam-

widths of both the linear and circular configurations, and shows the circularly

polarized beamwidth reduction to be only 1-1/2 percent. The increased side-

lobe level due to the variation in aperture distribution can be assumed to be

similarly negligible. The measured cross-polarization level increased

significantly to approximately -23 db. Since ellipticity of the transmitter was

maintained to 0. 25 db maximum, -30 db is the minimum cross-polarization

level which could be measured even with a perfectly circular antenna, so that
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Table 9

FINAL MEASURED BEAMWIDTHS

LINEAR POLARIZATION

Freq E-Plane H-Plane 0 = 45 4 = 315 Avg
(GHz) (arc min) (arc min) (arc min) (arc min) (arc min)

Port 1 13.500 75.0 75.0 75.0

13. 600 77.0 73. 8 75.0 75. 0 75.2

13.700 77.0 70.5 73.75

Port 2 14. 550 70. 7 70. 5 70. 16

14. 650 70.4 66.4 72.0 71.2 70.0

14. 750 75.0 63.8 69.4

CIRCULAR POLARIZATION

(E) (H) 45 315 Avg Pol. Beam
Freq (arc (arc (arc (arc (arc Narrowing
(GHz) min) min) min) min) min) Circ. /Lin. (%)

Port 1 13. 500 75.0 73. 5 74.25 0.99 1
RHCP 13. 600 75.0 73. 1 72.4 75.0 73.9 0.983 1.7

13.700 73.1 71..2 72.15 0.979 2.1

Port 2 14.550 71.3 69.4 70. 35 0.995 0. 5
LHCP 14. 650 69.4 67. 5 68. 6 69.4 68. 7 0. 982 1. 8

14.750 72.7 63.8 68.25 0.984 1.6

Avg Beam Narrowing Due to Polarizer 0. 9855 1. 45

the increase in cross-polarization level can be attributed almost entirely to

the measurement process. Measured gain decreased 0. 25 db and 0. 40 db on

the receive and transmit channels, respectively. In Table 2, it was seen that

the polarizer decreases blockage efficiency by 4. 8 percent, or 0. 21 db. This

leaves only 0. 04 and 0. 19 db in receive and transmit channels, respectively,

to be attributed to polarizer network insertion loss, pattern effects, and
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measurement error. The polarizer, then, is seen to be essentially free of

gain degrading effects, other than the increased blockage which would be

eliminated in any future iteration of the design. Overall efficiency of the

circularly polarized antenna subsystem, as delivered, is 57. 67 percent at

13. 600 GHz and. 49. 89 percent at 14. 650 GHz. Patterns were also measured

in the configuration for transmitting left-hand circular polarization and

receiving right; these patterns are essentially identical to the delivered con-

figur atio n.

Patterns of the azimuth and elevation tracking signals, as derived through the

complete antenna subsystem, are shown in Figures 99 and 100, respectively.

The unmodulated reference sum signal (solid pattern) is shown for comparison.

To obtain these patterns, the switches of the tracking network were biased to
provide continuous addition or subtraction of the difference signals, as

required, for each pattern cut. In actual operation, the tracking network

output is a signal modulated between the two levels of the two dashed curves
for any particular angle encountered. The degree of modulation versus bore-
sight angle is plotted in Figure 101. The design goal of 20 ±2 percent per
degree modulation was achieved over approximately twice the 3-db beamwidth.
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Section 3

PROGRAM SUMMARY

A complete working breadboard model of a K-band single-channel

monopulse antenna was developed, with primary emphasis on efficiency and

bandwidth of each component. The major elements of the subsystem include

a near-field multimode feed, optimized Cassegrainian geometry, an add-on

circular polarizer, and a single-channel tracking network. Due to funding

limitations, the reflectors were not of flight quality and imposed a severe

limitation on the efficiency achievable with the breadboard model. The

efficiency which would be obtainable with a flight-quality antenna are shown

in Section 3. 1.6 to exceed 70 percent.

3. 1 PERFORMANCE VERSUS SPECIFICATIONS

The antenna specifications established in the contract were delineated in

Section 2. 1. The performance achieved with the antenna subsystem is dis-

cussed relative to the specifications in the following paragraphs.

3. 1. 1 Polarization

Circular polarization is achieved with an add-on, or separable, polarizer.

As delivered, the antenna is configured to transmit right-hand circular and

receive left. Rotation of the polarizer by 90 degrees adapts the antenna to

a transmit left and receive right configuration. Removal of the unit results

in transmission of horizontal linear polarization and reception of vertical

linear. Ellipticity of the polarizer is less than 2 db across the required

frequency band, and less than 1/2 db over the receive band.

3. 1. 2 Power Handling

All components utilized in the antenna subsystem are inherently capable of

handling the required 50 watts of transmitter power. The delivered sub-

system is expected to be capable of operating with considerably greater

power.

B !N G PAGE PLAT- J7\ l2
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3. 1. 3 Transmit-Receive Isolation

Measurement of the isolation between transmit and receive channels was

inadvertently omitted in the final subsystem measurements, but study of the
pattern data indicates a considerable degree of isolation. This isolation is

achieved primarily in the orthomode transducer, which has an inherent value

greater than 40 db, but is degraded by reflections in the feed network and
the reflector assembly. It is expected that the isolation achieved is on the

order of 30 db or greater.

3. 1.4 Error Signal Modulation Level

The modulation level of each of the monopulse tracking error signals on the
receive sum signal is within the 20 ± 2 percent per degree specification.
Modulation effects on the transmit channel were not measurable.

3. 1. 5 Apollo Tracking Electronics Compatibility

An interface electronics assembly is provided to adapt the +3, -50 volt
switching signals of the Apollo tracking electronics to the 0, +5 volt signals
required by the tracking network. An internal power supply is used to pro-
vide ±15 volt power for the switches as well as +5 volt power for the inter-
face logic. The internal supply requires 115 volt, 60 Hz prime power. In
addition, an internal circuit for simulation of the FTD I and FTD II switching
signals is provided for test purposes.

3. 1. 6 Antenna Efficiency

The measured gain and efficiency values achieved with the antenna subsystem
are shown in Table 10. The design goal parameters were predicated on a
reflector surface error of approximately 0. 010 inch, rather than the
0. 030-inch tolerance of the commercial grade reflector. Even with the
nearly 9 percent loss incurred with the larger surface error, the values
achieved are relatively close to the design goals.

A breakdown of individual elements contributing to the overall efficiency is
given in Table 11. Intermediate products of efficiency which are of particu-
lar interest are bracketed in that table. The values for illumination taper
and spillover were calculated from the patterns of the feed network. The
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Table 10

DELIVERED SYSTEM EFFICIENCY

Original Final Configuration
Alignment Linear Circular

Configuration Linear

Polarization Design 14. 650 13. 600 14. 650 13. 600 14. 650

Frequency Goal GHz GHz GHz GHz GHz

Gain max 45.44 45.44 44.79 45.44 44.79 45.44

(db)

Gain 43. 36 43.21 42.65 42.82 42.40 42.42

measured
(db)

- measured 62 59. 84 61. 09 54.70 57. 67 49.89

(%)

product of these terms yields the aperture efficiency, which can be com-

pared to the beamwidth efficiency, ca, which is derived from measured

beamwidths in Table 12. The similarity of these aperture efficiency values,

determined in different manners, lends considerable credence to the analyti-

cal values. All effects not specifically accounted for, such as VSWR, ohmic

and interactive loss are included in the value for feed network loss. The

resulting feed efficiency is seen to be quite high, even including some losses

which likely do not belong in that category.

The reflector surface error is based on the 0. 030-inch tolerance of the

reflector and 0.020 inch on the subreflector. Cross-polarization efficiency

is estimated from the pattern results. Any loss due to surface reflectivity,

which is very difficult to measure, was included in the lump sum ascribed

to the feed network.

A value of potential efficiency is given in Table 11 for each frequency and

configuration. This represents the overall antenna efficiency which would

be obtained with a flight-quality reflector with a contour tolerance of

±0.010 inch, with the feed network ports matched to provide a maximum

VSWR of 1. 5:1 and with the antenna geometry adapted to optimize blockage
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Table 11

EFFICIENCY BREAKDOWN

Original Final Configuration
ConfigurationConfiguration Linear CircularLinear

Design 14.650 13. 600 14.650 13.600 14.650
Loss Mechanism Goal GHz GHz GHz GHz GHz

Illumination Tapes, ri 93 92 92

Spillover, rs 89 94.4 94.4

[Aperture Efficiency, [82. 8] [86. 8] [86. 8]
'vi X %]

[Measured Aperture -- [85.9] [84.7] [85.9]
Efficiency, a ]

Blockage, -'b 93 89. 3 89. 3 84. 5

Feed Network, 86 95 97 87 97 84
rqm x m e

Feed Efficiency, % 66.2 73.7 75.2 67.5 71.2 61.6

Reflector Surface 97 82 82
Error, 'r x Th

Cross Polarization, rx 98 99 99

Overall Antenna, r~ 62.9 59. 8 61. 1 54.7 57. 7 49.9

Potential, T1 71. 5 70. 1 65.4 69.7 62.8



Table 12

APERTURE EFFICIENCY

BW = a- Minimum a for circular aperture is 58. 5 deg.

BW BW Average
min meas Efficiency

Polarization Frequency (deg) (deg) a (%)

13. 50 1.066 1.25 68.68

13.60 1.058 1.25 69.24

13.70 1.051 1.229 68. 29

14.55 0.989 1. 177 69. 63

14.65 0.983 1.167 69.44

14.75 0.976 1.157 69.26

Avg 69.09 84.67

13.50 1.238 67.99

13.60 1.232 68.05

13.70 1. 203 66. 81

v 14.55 1.173 69.38

14.65 1. 145 68. 15

14.75 1.138 68.11

Avg 68.08 85.93

in the circularly polarized configuration. These factors are readily achiev-

able and would be expected in a flight configuration subsystem. Under these

conditions, it is anticipated that an overall antenna subsystem efficiency

exceeding 70 percent across the frequency band is achievable with the

antenna configuration developed on this contract, and for larger reflectors

for which the aperture blockage can be less, efficiencies greater than

75 percent can be obtained.

3. 1.7 Pointing Accuracy

The pointing accuracy of the antenna is dependent upon characteristics of

the Apollo tracking electronics and therefore was not directly measurable.

However, the tracking modulation levels are within the desired range, and

the receive sum and difference patterns are exceptionally stable with
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frequency and demonstrate excellent null depths, so the pointing accuracy

is expected to be well within the 1-db beamwidth.

3. 1. 8 Lightweight Implementation

Design data for a lightweight, thermally stable antenna configuration of

graphite/epoxy composite construction is provided. The estimated weight

for this configuration is less than 6. 5 pounds for the reflectors and support-

ing structure. A flight-weight configuration of the feed network and tracking

network is estimated to weigh an additional 3 and 2 pounds, respectively,

resulting in an overall antenna subsystem weight of approximately

11. 5 pounds.

3. 1.9 Operating Frequency

The antenna subsystem operates satisfactorily over the 13. 500- to

13. 700-GHz and 14. 550- to 14. 750-GHz frequency bands required for

receiving and transmitting, respectively. The subsystem appears to be

capable of operating at high efficiency over even greater bandwidths.

3.2 POTENTIAL AREAS OF IMPROVEMENT

The commercial-quality parabolic reflector imposes a severe limitation on

the efficiency achievable with the antenna subsystem. Losses due to the

reflector contour amount to approximately 0.6 db more than would be

encountered with a flight-quality reflector. Side lobe and cross-polarization

levels which would be achievable with a precise reflector are difficult to

determine. It would therefore appear quite beneficial to develop a flight-

quality reflector and supporting structure for a more realistic evaluation of

subsystem performance.

The space-filter network utilized for circular polarization is capable (Sec-

tion 2. 2. 5) of considerably better performance than that obtained with the

delivered configuration. Further development effort, particularly to deter-

mine the source of troublesome resonance effects and to derive an analytical

basis for subsequent polarizer designs, is indicated.

Several parameters of the delivered configuration, such as blockage in the

circularly polarized configuration and the VSWR of the feed network ports,

154



which are not at their optimum values, are readily correctable in subsequent

design iterations, and require no further development effort. A combined

analytical and experimental investigation to thoroughly resolve the question

of near-field phase center and corresponding selection of subreflector con-

tour (Section 2. 2.4. 3), should be performed in order to determine the opti-

mum near-field configuration.

3.3 APPLICATIONS

Although designed specifically for use on earth-orbiting spacecraft, the

antenna subsystem and associated techniques developed on this contract have

wide areas of application. The significantly high efficiency achieved with the

near-field multimode configuration would be of increasing value with increas-

ing gain requirements, permitting the use of smaller reflector diameters

for equal gain.

The 48-inch-diameter reflector of this subsystem is about the minimum

size for which the Cassegrainian configuration is the optimum choice for

this frequency of operation. However, the multimode feed network as a

prime-focus feed is equally beneficial. The efficiency loss incurred by

adapting from a near-field to far-field configuration is approximately 4 per-

cent (less than 0. 2 db), so the high efficiency characteristics of the multi-

mode feed are readily applicable to smaller antenna implementations.

As a nontracking feed, elimination of the tracking couplers removes a major

limitation on antenna bandwidth, and the multimode network is capable of

providing exceptionally high efficiency over a bandwidth of 20 to 25 percent.
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